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The interference of two photons at a beam splitter is at the
core of many quantum photonic technologies, such as
quantum key distribution or linear-optics quantum com-
puting. Observing high-visibility interference is challenging
because of the difficulty of realizing indistinguishable sin-
gle-photon sources. Here, we perform a two-photon inter-
ference experiment using phase-randomized weak coherent
states with different mean photon numbers. We place a
tight upper bound on the expected coincidences for the case
when the incident wavepackets contain single photons,
allowing us to observe the Hong–Ou–Mandel effect. We
find that the interference visibility is at least as large as
0.995�0.005

−0.013 . © 2018 Optical Society of America

OCIS codes: (270.0270) Quantum optics; (270.5290) Photon statis-

tics; (270.5565) Quantum communications.
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One central effect in quantum optics is the interference of two
indistinguishable single-photon wavepackets at a beam splitter,
as illustrated in Fig. 1(a). When single-photon counting detec-
tors are placed in the output port, quantum mechanics predicts
that there are no coincident events in the ideal situation, indi-
cating that there are never single photons appearing in each
output port. The only possibilities are two photons emerging
from one output port or the other [Figs. 1(b) and 1(c)].

This fusion or bunching of photons, known as the Hong–
Ou–Mandel (HOM) effect and observed over 30 years ago
[1,2], arises from the destructive interference between the
two quantum mechanical probability amplitudes for single
photons emerging in each of the two output ports [Figs. 1(d)
and 1(e)], and highlights the quantum nature of light. The
two-photon visibility V � 1 − g�2��0� is equal to 1 in this case,
where g�2��0� is the minimum of the normalized second-order
(photon-photon) coherence function.

While the technology for generating indistinguishable sin-
gle-photon wavepackets has progressed rapidly over time, it is
highly desirable to use simpler sources, such as attenuated laser
pulses. Unfortunately, when the single-photon wavepackets are
replaced by phase-randomized weak coherent-state (PRWCS)
wavepackets, which can be generated with attenuated lasers,
HOM interference is obscured by the presence of multi-photon
wavepackets as governed by Poisson statistics. For these highly
classical states, V � 1∕2 in the ideal case [3–8].

Here, based on the proposals and analyses of Yuan et al. [9]
and Navarrete et al. [10], we show that it is possible to place a

Fig. 1. (a) HOM interference at a beam splitter. (b)–(e) Illustrations
of the four quantum mechanical pathways for photon interaction at
the beam splitter. The HOM effect arises from destructive interference
between the pathways (d) and (e).
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tight upper bound on the outcome of the two-photon interfer-
ence experiment using PRWCSs if we perform measurements
with different mean photon numbers, as discussed in detail
below. In particular, we upper-bound the expected coincidence
probability for one photon emerging from each output port of
the beam splitter conditioned on the presence of two incident
single-photon wavepackets P�1, 1j1, 1�, even though we use
wavepackets with a fluctuating photon number. We stress that
no post-selection of events is used in the analysis; all measure-
ments are integrated into the expression for the upper bound.
In a related work, Valente and Lezama [11] recently performed
quantum tomography of single-photon temporal states using
PRWCS with varying mean photon numbers.

To see how PRWCSs can be used to bound the outcome of a
two-photon interference experiment, we use the analysis pre-
sented in Ref. [10] for the case of a two-mode input and
two-mode output photonic circuit appropriate for the setup
illustrated in Fig. 1(a). For clarity of presentation, we first con-
sider the case that the detectors have no dark counts; then we
describe how to account for this non-ideality below. Briefly, the
probability for a measured coincidence (mnemonic C) at the
output ports is given by

Cμa , μb � κ1κ2μaμbP�1, 1j1, 1� � κ1κ2
μ2a
2
P�1, 1j2, 0�

� κ1κ2
μ2b
2
P�1, 1j0, 2� �O�μra, μsb, μtaμub�: (1)

Here, P�nc , nd jna, nb� is the probability of nc and nd photons
in the output ports c and d , respectively, conditioned on the
presence of na and nb photons in input ports a and b, respec-
tively; μi is the mean photon number of the PRWCS for input
port i; κj is the efficiency of detector j; and O is a positive-
definite quantity related to higher-order terms in the μs with
integer powers r, s, t , u > 1.

The first term on the right-hand side of the equation rep-
resents the HOM effect and accounts for both of the scattering
processes in Figs. 1(b) and 1(c); P�1, 1j1, 1� � 0 using the pre-
dictions of quantum mechanics, although we make no
assumption about the value for this probability. The term pro-
portional to P�1, 1j2, 0� [P�1, 1j0, 2�] is due to a two-photon
wavepacket in port a [b] and an empty wavepacket in port b [a].
For the case when μa � μb, these terms have similar-sized
coefficients, regardless of the smallness of the mean photon
number, which is the reason why V is limited to a value of
1/2 or less.

The goal of the protocol described in Refs. [9,10] is to
isolate a desired conditional probability in Eq. (1). This is ac-
complished by noting that the higher-order terms in Eq. (1) fall
off rapidly when the μs are not too large. Thus, it is possible to
truncate the higher-order terms at some point, leaving N un-
known conditional probabilities. It is possible to determine
these conditional probabilities by performing multiple experi-
ments with N total different values of μa and μb. (In the quan-
tum cryptography community, the largest values of μa and μb
are often called ”signal” states, whereas the smaller values [in-
cluding the zero mean photon number] are often called “decoy”
states.)

For the two-photon interference experiment considered
here, we want to isolate P�1, 1j1, 1�, which only involves single
photons in each port. Thus, we focus on the case when
μa, μb ≪ 1. Under this condition, the higher-order terms

represented by O in Eq. (1) will contribute negligibly to
Cμa , μb and will be dropped when we obtain an upper bound
on P�1, 1j1, 1� below. There are only three lowest-order condi-
tional probabilities to determine, indicating that only three
different experiments are required.

To this end, we consider using the following set of mean
photon numbers: (1) states with μa � μb � μ; (2) a state with
port a blocked so that μa � 0, μb � μ; (3) a state with port b
blocked so that μa � μ and μb � 0. By inspecting Eq. (1), we
see that the each state with a blocked input port isolates one of
the multi-photon terms so that

Cμ,0 � κ1κ2
μ2

2
P�1, 1j2, 0� �Oa�μr�, (2)

C0,μ � κ1κ2
μ2

2
P�1, 1j0, 2� �Ob�μs�: (3)

Combining Eqs. (1)–(3), we obtain

Cμ,μ − Cμ,0 − C0,μ � κ1κ2μ
2P�1, 1j1, 1� �Oab�μtμu�, (4)

where

Oab�μtμu� � O�μr , μs, μtμu� −Oa�μr� −Ob�μs� ≥ 0: (5)

An upper bound for the desired conditional probability,
denoted by P�1, 1j1, 1�ub, is obtained by using the fact that
Oab�μtμu� ≥ 0, dropping this term in Eq. (4), and solving
for the bound. We find that

P�1, 1j1, 1�ub � Cμ,μ − Cμ,0 − C0,μ

κ1κ2μ
2 ≥ P�1, 1j1, 1�: (6)

If μ and κi are well calibrated, measuring three coincidence
count probabilities can be combined via Eq. (6) to reveal
the HOM two-photon interference effect.

To avoid this calibration process with the aim of only using
the measured counts, we seek to place a bound on the denom-
inator appearing in Eq. (6). Considering the two decoy experi-
ments, the single-count (mnemonic S) probabilities for
each detector when photons are present in both input ports
are given by

SD1 � κ1μ�P�1, 0j1, 0� � P�1, 0j0, 1�� �OSc � κ1μ�OSc ,

(7)

SD2 � κ2μ�P�0, 1j1, 0� � P�0,1j0, 1�� �OSd � κ2μ�OSd ,

(8)

where OSc ,OSd ≥ 0 are terms of a quadratic order or higher in
the μs. Thus, we obtain the lower bound

�κ1κ2μ2�lb � SD1SD2: (9)

Inserting Eq. (9) into Eq. (6) results in the upper bound

P�1, 1j1, 1�ub � Cμ,μ − Cμ,0 − C0,μ

SD1SD2
, (10)

which depends only on measured count statistics and does not
require careful calibration of the μs or κs.

Generalizing our results to account for detector dark
counts involves an additional measurement where both inputs
to the beam splitter are blocked and recording dark-count-
induced coincidences and single counts. We then subtract
the appropriate dark events from the Cs and Ss.
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Equation (10) then applies using these corrected values for the
Cs and Ss.

To test this approach experimentally, we generate photonic
wavepackets using a highly attenuated, gain-switched vertical
cavity semiconductor laser (Vixar 680M-0000-X002) operat-
ing at 680 nm and a repetition rate of either 3.91 or
31.25 MHz. The laser pulse has a temporal width >7 ps
and is non-transform limited with chirp that varies from pulse
to pulse. The beam generated by the laser is attenuated,
coupled into a single-mode optical fiber, recollimated, sent
through a linear polarizer, and split. One beam reflects from
a mirror attached to a piezoelectric actuator driven by a ramp
to randomize the relative phase, and passes through an adjust-
able optical delay element consisting of a corner cube mounted
on a linear translation stage (Zaber, T-LSR150B).

The two beams are combined on a nearly symmetric beam
splitter with a nominal intensity reflection (transmission) coef-
ficient of 0.52 (0.48). The precise value of R � 1 − T is highly
sensitive to the angle of incidence and can be high as R � 0.54
(T � 0.46) and as low as R � 0.50 (T � 0.50). The light
emerging from each output port of the beam splitter is sent
to single-photon counting detectors (Perkin–Elmer, SPCM-
AQ4C, 60% nominal detection efficiency, <0.5% afterpulsing
probability,<103 dark counts per second). We do not purpose-
fully adjust the detector efficiency or optical loss from the beam
splitter to the detectors, but we find that the overall efficiencies
(optical loss time detector efficiency) for each path are the same
to within �5% based on measurements of the single count
rates. The electrical pulses generated by the detectors are sent
to single- and coincident-event counters, which only record
data for events appearing during a 10 ns wide window
synchronized to the laser pulse. Note that the relative phases
of the interfering pulses are not randomized on a pulse-to-pulse
basis, but are on the scale of our total measurement time
(typically 5s).

Figure 2(a) shows the normalized coincidence count prob-
ability Cμ,μ∕S1S2 � g �2��τ� for equal and low mean photon
numbers as the optical delay τ is adjusted, where g�2� is a nor-
malized intensity-intensity (second-order) correlation function.
As τ approaches zero from either side, g �2� decreases with a
characteristic shape related to the auto-correlation of the wave-
packet temporal profile. We fit the data with an inverted and
offset Gaussian function that takes on the value of 1 for large
delay, and the width, temporal offset, and minimum value are
left as fit parameters. At zero delay, g �2��0� � 0.529� 0.015
from the fit-function minima as expected based on the
discussion above, where the errors represent the 95% confi-
dence interval. Our results are comparable to the best obtained
in previous experiments measuring photon-photon correlations
with PRWCSs [5,6,8,12–14].

We use Eq. (10) to bound the outcome of the two-photon
interference experiment, as shown in Fig. 2(b). For large rela-
tive delay, P�1, 1j1, 1�ub ∼ 0.5 as expected for distinguishable
photons. As the delay approaches zero from either side,
P�1, 1j1, 1�ub decreases. We fit the data with an inverted
and offset Gaussian function that takes on the value of 1/2
for large delay, and the width, temporal offset, and minimum
value are left as fit parameters.

We find P�1, 1j1, 1�ub � 0.005�0.013
−0.005 at τ � 0, clearly

revealing the HOM two-photon interference effect. Here,
the positive error represents the 95% confidence interval of

the fit. The negative confidence interval (−0.008) places
the bound at less than zero, which is not physical for a prob-
ability, so we set this error to make the bound consistent with
zero. Quantum theory predicts P�1, 1j1, 1�q � �R − T �2 �
0.0016 using the nominal values for R and T , although it could
range between 0 and 0.0064. The semi-transparent band in the
figure indicates this possible range. Our experimental
observations are consistent with this prediction to within
our measurement errors.

In terms of the conditional probability, the visibility can be
written as

V � 1 −
P�1, 1j1, 1�ub
2P�1, 1j1, 1�c , (11)

where P�1, 1j1, 1�c � 1∕2 is the predicted value for classical
particles [10]. We find that V � 0.995�0.005

−0.013 , which is com-
parable to the best of any experimental observation. This result
is made possible by the ease of generating highly indistinguish-
able PRWCSs using attenuated laser light.

As μ increases, the measured values of g �2��0� increase, as
shown Fig. 3(a). Here, we adjust μ by changing the coupling
of the laser light into the single-mode fiber so that there is
no misalignment of the beams at the beam splitter where in-
terference takes place. To compare to predictions based on
quantum theory, we use Eqs. (11) and (15) of Ref. [8]. We
include the beam splitter characteristics, and assume μa �
μb � μ and κ1 � κ2 � κ. (The predictions are rather insensi-
tive to these assumptions.) Furthermore, we ignore detector
dark counts and afterpulsing, which is appropriate for our
low-noise detectors.

We find reasonable agreement between our observations
and theoretical predictions (χ2R � 0.92) when we use an

Fig. 2. (a) Second-order correlation function. (b) Observation of
two-photon interference using PRWCSs. The laser pulse repetition rate
is 31.25 MHz, κμ � �3.15� 0.08� × 10−3, and we collect four data-
sets at each delay with a 5 s long counting interval for each. The vertical
error bars correspond to the standard deviation of the four trials.
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indistinguishability parameter δ � 0.985, where δ � 1 (0)
when the pulses are perfectly indistinguishable (distinguish-
able). (δ � cos Φ in the notation of Ref. [8].) This small
non-ideality may be due to tiny angular or spatial misalignment
between the interfering beams due to the creep of the transla-
tion stage in our setup or from other mechanical instabilities.

Even with these slight imperfections, we find that
P�1, 1j1, 1�ub remains deep within the quantum regime (i.e.,
<1∕2) over the entire range of mean photon numbers, as
shown in Fig. 3(b). The red dashed line is the expected value
based on quantum theory for an ideal setup, and the semi-
transparent band shows the range of values predicted for our
non-ideal setup. For the largest value of μ, the measurement
falls outside this band. This is likely due to the higher-order
terms ignored when deriving the upper bound. The accuracy
of the bound can be improved using additional states with
intermediate photon numbers [9,10], which we will explore
in future work. However, even with this increase,
P�1, 1j1, 1�ub ≪ 1∕2.

Another interpretation of this Letter is that P�1, 1j1, 1�ub
provides a sensitive measure of the indistinguishability of the
single-photon wavepackets [15], which has application to
quantum key distribution. In particular, an eavesdropper will
necessarily disturb the quantum photonic wavepacket that
has only a single photon, which can be detected by mixing

the received wavepacket with an identical local-oscillator wave-
packet and using the bounding technique described here.

Our approach may also find application in other experi-
ments that apparently required the use of single-photon wave-
packets. As discussed by Yuan et al. and Navarrete et al., it is
possible to put tight upper and lower bounds on the outcome
of quantum experiments for a wide range of linear photonic
circuits using PRWCSs with various values of the mean photon
numbers and truncation of the corresponding higher-order
terms. It should also be possible to apply our general approach
to other states, such as thermal light.

Finally, the photon fusion shown in Figs. 1(b) and 1(c) rep-
resents a highly entangled, two-photon N00N state, which can
be used for enhanced metrology [16]. The output ports of the
beam splitter can be directed to other optical systems, such as
an interferometer, for increased sensitivity to changes in the
phase of an object, for example. Of course, additional measure-
ments using states with varying mean photon numbers are
required in this approach, but no post-selection of events is
required. Further analysis is needed to determine whether
this approach offers any advantage, which we will report on
elsewhere.
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