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a b s t r a c t 

The Fisher-Shannon complexity plane is a powerful tool to characterize complex dynamics. It locates, on 

a two-dimensional plane, a dynamical system based upon its entropy and its Fisher Information Measure 

(FIM). It has been recently shown that by using ordinal patterns to compute permutation entropy and 

FIM, this plane unveils inner details of the structure underlying the complex and chaotic dynamics of a 

system, not easily exposed by other methods. The entropy of the dynamics is invariant to the way the 

patterns are ordered, but the way FIM is defined is sensitive to the order in which we classify the or- 

dinal patterns. In this paper we analyze in detail the impact that the sorting protocol used to calculate 

FIM has on the structure unveiled by the Fisher-Shannon plane. We show the importance of a suitable 

choice, which can lead to saving computational resources, but also to disclose details of the dynamics 

not accessible to other sorting protocols. Our results agree with previous research, and common charac- 

teristic fingerprints are found for the different chaotic maps studied. Our analysis also reveals the fractal 

behaviour of the chaotic maps studied. We extract some underlying symmetries that allow us to simulate 

the behaviour on the complexity plane for a wide range of the control parameters in the chaotic regimes. 

© 2021 Published by Elsevier Ltd. 
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. Introduction 

Describing and characterizing the complex dynamics of chaotic 

ystems is a challenging task. Some techniques are computationally 

emanding, and some hidden features of the dynamics are hard to 

etermine. There are several tools in the literature to quantify and 

haracterize chaos. Some can help distinguish stochasticity from 

eterministic chaos, some allow discrimination among different 

ynamical regimes in a complex dynamical system [1–5] . Among 

hem, Entropy and Fisher Information Measure (FIM), to be de- 

cribed later, are two quantifiers that extract global and local infor- 

ation, respectively, from a complex system. A convenient way to 

resent these two quantifiers is through the Fisher-Shannon com- 

lexity plane [6] , that projects the FIM of the system versus its en-

ropy, localizing the dynamics of the system on a two-dimensional 

lane. Fig. 1 (explained in detail in the next section) presents the 

ntropy versus FIM for the logistic map, x n +1 = rx n (1 − x n ) , as the

ontrol parameter is scanned from 3 . 55 ≤ r ≤ 4 . 0 . 

This technique has shown the ability to characterize nonlinear 

ynamics, and to distinguish between stochastic noise and deter- 
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inistic chaos [7–9] by comparing and tracking the locations of 

ynamical systems on the plane. 

In a recent work, Spichak et al. [10] studied the Fisher-Shannon 

omplexity plane of different chaotic iterative maps under the lens 

f Bandt and Pompe’s [11] ordinal patterns approach. They pro- 

ected the different maps on the plane as they scanned their con- 

rol parameters. Spichak et al. found that, using ordinal patterns to 

alculate the Fisher-Shannon plane is more powerful than a more 

raditional PDF-based Fisher-Shannon analysis, when it comes to 

nveiling the hidden structure of complex dynamical systems. An 

nteresting feature identified is that most of the non-invertible iter- 

tive maps share a common fingerprint on the plane as the control 

arameter is scanned. Spichak et al. also showed how this tech- 

ique detects transitions in the dynamical behaviour of the chaotic 

ystem. 

However, when computing the location of a complex dynam- 

cal system on the Fisher-Shannon plane, entropy is invariant to 

ow we order the patterns but FIM is sensitive to the chosen or- 

er [8,10] . This can lead one system to be projected in different 

ocations on the plane when using different arrangements of the 

atterns. In this paper we explore the impact of the sorting pro- 

ocol of the ordinal patterns in extracting information through the 

isher-Shannon complexity plane. 
e impact of ordering patterns in the Fisher-Shannon complexity 
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Fig. 1. (a) Bifurcation diagram of the logistic map. Dashed lines indicate where 

symmetry breaking takes place (explained in the main text). (b) Fisher-Shannon 

plane for the logistic map using ordinal patterns of dimension D = 3 . (c) Fisher- 

Shannon plane for the logistic map using ordinal patterns of dimension D = 4 . FIM 

has been computed using Lehmer sorting protocol. 10 4 values of the control param- 

eter are computed in (b) and (c), in the range 3 . 55 ≤ r ≤ 4 . 0 . We use a color scale 

to identify r in the figures. 
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. The Fisher-Shannon plane using ordinal patterns 

.1. Permutation entropy 

In order to compute the entropy and FIM of the time series of 

 complex dynamical system, the ordinal patterns approach trans- 

orms the raw time series of the dynamics into a sequence of pat- 

erns, also known as words . These words are built by comparing 

onsecutive values of the time series [11] . The number of possible 

ords will depend on their dimension, i.e., on how many consecu- 

ive values we consider to construct the words. Words are assigned 

epending on the relative magnitudes of consecutive points in the 

ime series. For example, for dimension D = 2 we compare two 

onsecutive values, { x i , x i +1 } . If x i < x i +1 we assign the word 01.

or x i +1 < x i we assign the word 10. Similarly, for dimension D = 3 ,

f x i < x i +1 < x i +2 then we assign the word 012; if x i < x i +2 < x i +1 

hen we assign the word 021, and so on. We have a total of D ! dif-

erent words for dimension D . These words capture temporal cor- 

elations among consecutive values, or events, of the time series. 

ome experimental time series, because of limited instrumental 
2 
esolution, or some mathematical models with periodic behaviour, 

resent equal consecutive values ( x i = x i +1 ). In the iterative chaotic 

aps under consideration that situation does not occur. 

From the sequences of patterns we calculate the probability of 

ach word, and we compute the Permutation Entropy (PE) as 

 E = 

1 

ln (D !) 

D ! ∑ 

i =1 

p i ln (p i ) (1) 

here D is the dimension of the words, D ! is the number of dif-

erent possible words, p i is the probability of the i th word, and PE 

s normalized so that 0 ≤ P E ≤ 1 . For a purely random distribution 

white noise) PE is maximum, while for a completely regular dis- 

ribution, where only one word is present and the system is com- 

letely predictable, PE is zero. 

Permutation entropy is a measure of the global behaviour of the 

ynamics. This measure is robust to changes in the distribution on 

mall scales, like those coming from experimental noise, or equip- 

ent resolution. For example, some small noise added to a triad of 

alues changes the actual values of the events of the time series. 

evertheless, this does not impact the patterns and the computed 

ermutation entropy, as these patterns rely on how they compare 

o their neighbours: { 2 . 25 , 3 . 85 , 0 . 65 } → 120 ; { 2 . 43 , 3 . 70 , 0 . 90 } →
20 . Permutation Entropy is also invariant to the way we order the 

 ! words. 

This protocol implies a compression of information: words lose 

he information of the exact values in the time series, but they 

re able to extract signatures of temporal correlations in the dy- 

amics. This method of calculating the entropy is useful in un- 

eiling long temporal correlations in the dynamics, in identify- 

ng time delays, in finding temporal scales, in distinguishing ran- 

om behaviour from determinism, and in statistically forecasting 

vents [12–18] . 

.2. Fisher information measure 

Fisher Information Measure (FIM) is another quantifier of com- 

lexity. It measures the rate of change of consecutive values in a 

ime series, which makes it sensitive to small, localized changes 

nd perturbations in the values of the time series. For a distribu- 

ion with N possible values it can be defined as 

 IM = F 0 

N−1 ∑ 

i =1 

(
(x i +1 ) 

1 / 2 − (x i ) 
1 / 2 

)2 
(2) 

here F 0 = 1 if x i ∗ = 1 for i ∗ = 1 or i ∗ = N, and x ∗
i 

= 0 ∀ i � = i ∗. Oth-

rwise F 0 = 

1 
2 . { x i , i = 1 , . . . , N} is the time series. For a purely or-

ered system FIM is maximum, while for a purely stochastic, un- 

orrelated process FIM is zero. FIM has been shown to be a pow- 

rful tool to identify and characterize complexity in nonlinear dy- 

amical systems [19–22] . 

PE and FIM complement each other, as the former extracts in- 

ormation about the dynamics at a global scale and can feature 

ong temporal correlations in the time series, while the latter de- 

cribes the local correlations of the dynamics in the time series. 

or this reason, the Fisher-Shannon plane is a good tool to char- 

cterize complex dynamics, distinguish stochasticity from chaos, 

nd differentiate dynamical regimes. In this paper we compute FIM 

ased on ordinal patterns, where { x i } is replaced by { p i } , the prob-

bilities of the words, in Eq. (2) . 

However, the way FIM is defined entails that the order of the 

robability distribution set affects the computed FIM. For a given 

et of N different values with probabilities { p i , i = 1 , . . . , N} there

re N! possible options of sorting them. Each one of the possi- 

le sorting protocols can provide a different value of FIM. Oli- 

ares et al. [8] studied the two most common ordering criteria, 

he Lehmer and Keller sorting protocols, for the logistic map, using 
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Fig. 2. Fisher-Shannon plane for the logistic map using words of dimension D = 3 . 

Four different ordering protocols are presented: (a) Lehmer (SA-123456), (b) Keller 

(SA-125346), (c) SA † (SA-431652), and (d) SA ∗ (SA-241536). See main text for a de- 

scription of SA labels. 10 5 values of the control parameter r are computed for each 

plot, 3 . 55 ≤ r ≤ 4 . 
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I

n

ords of dimension D = 6 . For the windows of regularity in the 

ifurcation diagram of the map, they found that FIM from both 

rdering criteria coincide, but in the chaotic regions each sorting 

riteria gives a different FIM. They detected a linear relationship 

etween both criteria for the period doubling regions present in 

he dynamics, but no clear relationship for more chaotic regions. 

For words of dimension D = 3 there are D ! = 6 possible words,

nd (D !)! = 720 possible orders for these words. This large num- 

er of possibilities makes a detailed analysis of all possible orders 

n impossible challenge for dimensions D ≥ 4 . Here we present a 

etailed analysis of how the ordering criteria for words of dimen- 

ion D = 3 impact the Fisher-Shannon plane. 

. The Fisher-Shannon plane for different sorting criteria 

The Fisher-Shannon plane locates the complex dynamical sys- 

em on a 2D plane. As we scan a control parameter of the sys- 

em we can track its trajectory on the plane, which allows us 

o compare the system at different control parameter values and 

nd similarities and differences in its dynamical structure. Values 

hat overlap on the 2D plane can be related to similar dynamical 

egimes, while values that are far apart on the plane can indicate 

ifferences in the dynamics. This can also help identify universality 

atterns among different dynamical systems [10] . Having the com- 

lex system spread out on the 2D plane can help identify detailed 

eatures of the system, while having the complex system concen- 

rated in a narrow area can tell us little about its features. 

When using words to compute the Fisher-Shannon plane (PE 

nd FIM), because of the nature of the words, we are exploring 

emporal correlations in the dynamics. Using words of different di- 

ensions can reveal differences in the dynamics at different tem- 

oral scales. Higher dimensions can extract longer temporal corre- 

ations from the dynamics, or more complex dynamical structures. 

n the case of Fisher-Shannon plane we can see in Fig. 1 that D = 4

ortrays a more detailed structure than D = 3 . Nevertheless, while 

his increase in detail is obvious for lower dimensions, for words 

f dimension D > 5 the gain in detail becomes less significant (see 

ig. 2 from Ref. [10] ). 

Fig. 1 presents the bifurcation diagram of the logistic map and 

he Fisher-Shannon plane for words of dimension D = 3 and D = 4 .

t is clear how the higher dimension plot presents a more detailed 
3 
tructure, distinguishing regions based upon their dynamics. For 

xample, for dimension D = 3 most of the r-values lie on the same 

egion showing low structure, following a straight-line shape on 

he plane, with blue dots (lower r values) and yellow dots (higher 

values) occupying the same area; for dimension D = 4 the com- 

lexity plane distinguishes different regions as the system deploys 

 clear structured pattern on the plane as we scan the control pa- 

ameter r. 

It makes sense that higher dimensionality picks up more de- 

ails of the dynamics, as we are considering more possible words, 

ach one of them extracting a particular aspect of the temporal 

orrelations in the time series. But reordering the words before we 

ompute FIM also has an impact on the level of detail we can ex- 

ract from the plane. Fig. 2 presents the Fisher-Shannon plane for 

he logistic map using words of dimension D = 3 for four differ- 

nt ways of sorting the words before computing PE and FIM. In it, 

e can appreciate how different the structure is portrayed. While 

here is no change in the values of PE across the sorting protocols, 

IM does change, which affects the vertical values in the plots. 

Fig. 2 a corresponds to the Lehmer sorting protocol, Fig. 2 b to 

eller, Fig. 2 c to SA 

† , and Fig. 2 d to SA 

∗ (the labeling of these sort-

ng protocols to be described later). While the FIM range in Fig. 2 a,

, and d are comparable, Fig. 2 c needs a wider vertical axis to 

ccommodate the dispersion in FIM values for SA 

† , indicating the 

uitability of this sorting protocol to differentiate dynamical struc- 

ures in the system. 

Because the quantifiers (PE and FIM) describe the complex dy- 

amics of the system, having the system spread out on the com- 

lexity plane helps distinguish different dynamical regions. Also, 

he structure present on the plane helps identify similarities in the 

ystem. 

If we look at Fig. 2 c, where the control parameter grows from 

lue to yellow, we can appreciate in it the different regions of the 

ifurcation diagram of the logistic map ( Fig. 1 a). A base line at the

ottom (blue-green) keeps a similar FIM value (around 0.2) as PE 

ncreases (moving to the right, from 0.73 to 0.87). Some branches 

eave the bottom line, increasing FIM and decreasing PE (move 

p and left). These branches are directly related to the bifurca- 

ion diagram of the map. At each window of periodicity, the dots 

f the plot sharply escape from the bottom line to the far end of 

ach branch (FIM increases and PE decreases). Then, at the period- 

oubling routes to chaos, the system increases PE and decreases 

IM stepwise, and moves from the far end of each branch to the 

ottom line. Finally, the system follows the structureless yellow 

urve as the logistic map explores its most chaotic region and the 

ntropy of the system increases. All of these features can be appre- 

iated in all four sorting protocols, but it is visually more obvious 

or some of them (SA 

† and SA 

∗). 

In order to differentiate regions that have different dynamical 

eatures it would be beneficial to find that sorting protocol that 

preads out the chaotic map the most on the plane. This would 

ocate those values of the control parameter for which the dynam- 

cal behaviour is similar in nearby regions of the geography of the 

lane, while separated from those values of the control parameter 

or which the dynamical behaviour is more different to them. 

There are 720 ways of sorting the six words of dimension D = 3 .

n order to label them we follow the next criteria: we assign a 

umber to each one of the six words as 

Ordinal pattern Word label 

012 1 

021 2 

102 3 

120 4 

201 5 

210 6 
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Fig. 3. Fisher-Shannon plane for words of dimension D = 3 using SA-241536 ( SA ∗) 

for the logistic, Ricker’s, sine, cubic, tent, and cusp maps. Just as happened for SA- 

Lehmer [10] , they all share the same fingerprint on the plane. Each map has been 

computed with 10 4 realizations of r. 
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Fig. 4. Words probabilities ( D = 3 ) versus control parameter r, for the logistic (a), 

Ricker’s (b), and tent maps (c). In the logistic map (a) three regions are distin- 

guished indicating different internal symmetries in the complex dynamics. In (c) 

visual representations of the words are depicted. 
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Then we assign the sorting array (SA) corresponding to the or- 

er of the label of the words to each specific sorting protocol. After 

his, Lehmer protocol is SA-123456; Keller protocol is SA-125346, 

nd so on: 

Lehmer Keller SA ∗ SA † 

SA-123456 SA-125346 SA-241536 SA-431652 

012 012 021 120 

021 021 120 102 

102 201 012 012 

120 102 201 210 

201 120 102 201 

210 210 210 021 

We find that the protocols SA-241536 ( SA 

∗) and SA-431652 ( SA 

† )

re especially convenient to see detailed structure (see Fig. 2 c and 

). These sorting arrays scatter FIM values on the plane, allowing 

o differentiate the internal features more than most other sorting 

rrays. 

Of all the 720 different sorting arrays there are some for which 

heir projection on the Fisher-Shannon plane coincide. A display 

f all these sorting arrays for the logistic map can be found in 

efs. [23,24] . By visual inspection of them we decide to focus on 

A 

∗ and SA 

† as these two sorting arrays present the most detailed 

tructure on the Fisher-Shannon plane. 

In a previous work [10] , using ordinal patterns and SA-Lehmer, 

t was found that most non-invertible maps leave the same fin- 

erprint on the Fisher-Shannon plane, even when this fingerprint 

hanges with the dimensionality of the words. This common- 

lity is also present for the other sorting arrays. Fig. 3 shows 

he Fisher-Shannon plane for the logistic, Ricker’s ( x n +1 = rx n e 
−x n ), 

ine ( x n +1 = r sin (πx n ) ), cubic ( x n +1 = rx n (1 − x 2 n ) ), tent ( x n +1 −
 min { n n , 1 − x n } ), and cusp ( x n +1 = 1 − r 

√ | x n | ) maps, for SA 

∗. In

t, all maps cover the same region and they feature the same struc- 

ure, pointing at akin dynamical complexity. As it was found for 

ehmer, the tent and cusp maps present a simpler structure that 

nly covers the skeleton of the more complex structure deployed 

y the other maps. This behaviour is present for other sorting ar- 

ays (not shown). 

. Complex structure in the logistic map 

As can be seen from Fig. 2 a, sorting the words using SA-Lehmer 

oes not extract as much structure as other protocols. On the other 
4 
and, when using SA 

∗ (see Fig. 2 d) the plot for the logistic map

overs a wider region on the plane and some recurrent behaviour 

an also be appreciated. For SA 

∗, the most chaotic values (yellow) 

o not overlap with the less chaotic ones (blue and green), as hap- 

ens for SA-Lehmer. There is also a well-defined curve for lower 

values (blue in the figure), that is not obvious with SA-Lehmer. 

his range of r values goes from the onset of chaos ( r = 3 . 569 ) to

he merging of the two branches in the bifurcation diagram (at 

 = 3 . 679 ). Even though the system is chaotic for these r values,

his well-defined curve on the Fisher-Shannon complexity plane is 

ndicating the presence of some internal symmetry in the dynam- 

cs. 

In order to explore the details of the symmetries on the dy- 

amics in this regime, we plot the probabilities of the six words of 

imension D = 3 versus the control parameter of each map. Fig. 4 

hows those probabilities for the logistic, Ricker’s, and tent maps. 

ll three figures share common features as the control parameter 

s scanned. This general behaviour is also present in other non- 

nvertible maps (not shown). 

From Fig. 4 we see that the system starts with high symmetry, 

ortrayed in the words probabilities for all these maps with one 

luster of four words. Words 021, 102, 120, and 201 have the same 

robability, while words 012 and 210 are forbidden (210 is forbid- 

en for the whole range). After that, this high symmetry breaks 

nto a lower symmetry and the cluster splits into two smaller clus- 

ers: 021-120 and 102-201. These two clusters then break down so 

hat each word from previous clusters has a different probability, 

nd the word 012 starts to have non-zero probability. 
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Fig. 5. Bifurcation diagram for the Logistic map around the third symmetry break- 

ing, r = 3 . 891 , indicated by the dotted line. 

Fig. 6. (a) Numerical simulation of the complexity plane using the underlying con- 

straints ( Eqs. (4) and (5) ), for SA † and D = 3 . Yellow dot indicated the only allowed 

position for the logistic map in region I. (b) Logistic map (in color) is shown over- 

lapped with the numerical simulation (in gray). (c) Zoom in of the blue dashed 

rectangle from (b). Regions I and II for the logistic map are also shown overlapped 

with the numerical simulation. (d) Zoom in of the red dashed rectangle from (b). 

Arrows indicate the dots corresponding to the windows of periodicity in the logistic 

map in regions II and III, which lie on top of one of the boundaries of the simula- 

tion. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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The fact that words are grouped in clusters indicates the pres- 

nce of determinism and internal symmetries in the dynamics. In 

ach of those regions we can find a correlation among probabilities 

ore restrictive than the default one: 

 j = 1 −
∑ 

i � = j 
P i . (3) 

There are four differentiated chaotic regions in these maps. 

hey are indicated in Fig. 4 a with roman numerals for the logis- 

ic map: 

• Region I ( r < 3 . 592 ) contains one cluster and two forbidden

words ( P 1 = P 6 = 0 , P 2 = P 3 = P 4 = P 5 = 

1 
4 ). The system on the

complexity plane is fully determined in this range, with a de- 

fined value for PE and for FIM. 

Words in this region are grouped so that each word in the 

cluster is the time inverse of another word in the same clus- 

ter ( 102 → 201 , 012 → 210 , ...), but they are also the time and

intensity inverse of each other ( 102 → 021 , 012 → 012 , ...). This

indicates that the dynamics present mirror symmetry (temporal 

reversibility) and rotational symmetry [25] . The term rotational 

symmetry introduced in Ref. [25] comes from the fact that, by 

rotating 180 degrees one of the words, as seen in Fig. 4 c, we

obtain the other word in the cluster. 
• Region II ( 3 . 592 < r < 3 . 679 ) contains two clusters and two for-

bidden words 

P 1 = P 6 = 0 

P 2 = P 4 � = P 3 = P 5 . 
(4) 

The system here has one degree of freedom, as we only need 

to know one of the probabilities to determine all the remaining 

ones. 

In this region the dynamics presents only mirror (temporal) 

symmetry, as each cluster is formed by those words that are 

the time inverse of the each other (012-210; 102-201; 021-120). 
• Region III ( 3 . 679 < r < 3 . 891 ) has no clusters and only one for-

bidden word ( P 6 = 0 ). But by visual inspection of the probabili-

ties one can see that the five remaining words are constrained 

by the following correlations: 

P 2 = 

1 −3 P 1 
2 

− P 3 
P 4 = P 1 + P 2 
P 5 = P 1 + P 3 . 

(5) 

The probabilities are not fully independent. The system here 

has two degrees of freedom. We only need to determine the 

probabilities of two words (for example P 1 and P 3 ) to determine 

its unique position on the complexity plane. 
• In region IV ( 3 . 891 < r ≤ 4 . 0 ) we have not found constraints

in the probabilities, other than that of Eq. (3) and P 6 = 0 . The

probabilities are not related. 

This differentiation of regions is a general feature found also 

or the other non-invertible maps under consideration. The dotted 

ines in Fig. 1 a indicate the r-values where there is a symmetry 

reaking for the case of the logistic map. Two of them ( r = 3 . 592

nd r = 3 . 679 ) can be related to the merging of two wide regions

n the bifurcation map. The third one is not obvious. If we zoom in

he r = 3 . 891 region (see Fig. 5 ) we can see that there is another

erging-like behaviour at this value, although the bifurcation di- 

gram is much more complex here, and the dynamics much less 

estrictive. 

Because of these correlations found in the different regions, we 

an simulate the Fisher-Shannon complexity plane without using 

he iterative equation of any specific map. All the maps that con- 

ain these relations among words probabilities ( Eqs. (4) , (5) ) should 

ie on the same region and they should present the same finger- 

rint on the plane. We compute PE and FIM using the probabilities 
5 
iven by Eqs. (3) , (4) , and (5) , instead of using any of the iterative

aps under study. 

For region I, because the probabilities are fixed by P 2 = P 3 = 

 4 = P 5 = 

1 
4 , there is only one option for PE and for FIM (for SA 

† ,

E = 0.7737 and FIM = 0.25). This means that all this region is de-

cribed by a single dot on the plane. Fig. 6 shows the numeri- 

al simulations to re-create the landscape on the Fisher-Shannon 

lane. The yellow dot in Fig. 6 a, c indicates the only allowed posi-

ion for region I. The position of this dot is different for different 

orting arrays (SA), but it coincides for some of them. 

For region II we have a richer behaviour, that allows for several 

ombinations to satisfy that P 2 = P 4 � = P 3 = P 5 . We scan 0 ≤ P 2 =
 4 ≤ 1 

2 and P 3 = P 5 = 

1 
2 − P 2 , obtaining all PE and FIM allowed val-

es, and therefore, all allowed projections on the complexity plane 

nder Eq. (4) . For this constraint, the system leaves the dot on the 

IM-PE plane in Fig. 6 a and starts to explore other values on the 

lane. We obtain the well defined curved line starting at the dot 
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Fig. 7. Fisher-Shannon plane using SA ∗ for the logistic map ( D = 3 ). (a) shows the 

whole chaotic region of the logistic map. The portion in green is then zoomed in 

(b), where the fractal behaviour is evident. (c) zooms in the rectangle in (b). (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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hat described region I. Fig. 6 c shows the curved line for the logis-

ic map (blue to yellow line) superimposed on the curve defined 

y our simulations. This curved line defines the allowed values for 

egion II of the different chaotic maps. Of course, while scanning 

he probabilities from lowest to highest in the simulation, we ob- 

ain a continuous line. In the case of the chaotic maps, the dots 

hat define that line do not go uniformly from end to end of the 

ine, but they are scattered on top of the line as the control pa-

ameter of each map is scanned. 

Looking at Fig. 3 we can appreciate that all the maps occupy 

arts of this curved line in the top part of the plane. None of 

he maps occupies the whole allowed curved line, and not all the 

aps occupy the exact same dots on the curved line. This is be- 

ause the range of probabilities explored by each map is different, 

nd also the maps do not explore the whole range of probabili- 

ies allowed by the constraints, despite satisfying these constraints 

mong words, given by Eq. (4) . 

Because of the high symmetry imposed by the constraints in 

his region, there are only eight different groups of sorting arrays, 

hich display eight different sections of the curved line (see all 

ossibilities in ref. [23] ). 

It is worth noting that our numerical simulations, based on the 

robabilities, defines the allowed values on the plane, but it does 

ot indicate which values of that line will be actually represented 

y each chaotic map. That is given by the combinations of prob- 

bilities that each map is covering, which is not the whole range. 

emember that this numerical representation is based on relations 

mong probabilities, and have nothing to do with any specific dy- 

amical system. It shows the maximum set of possible values on 

he plane that the chaotic map can take, and it is a bound to the

ossible region where the map can be found on the plane. 

For region III we impose the less restrictive constraint from 

q. (5) , and plot all the possible values (see Fig. 6 a). We scan

he possible combinations of probabilities under this restriction: 

 ≤ P 1 ≤ 1 and 1 ≥ P 3 ≥ 0 , maintaining 
∑ 5 

i =1 P i = 1 . Because of the

ore relaxed constraint, the possible landscape for this region is 

ider. Nevertheless, it can be appreciated how the projection of 

he logistic map is wrapped inside the allowed region of the sim- 

lation ( Fig. 6 b). It is worth remembering that the other chaotic 

aps under study show the same fingerprint on the complexity 

ap, and therefore are also wrapped by the grid from the numer- 

cal simulations, as they all share the same constraints. 

The logistic map, in its chaotic regime presents windows of 

eriodicity. These windows correspond to more deterministic and 

ymmetric dynamics which decrease PE and increase FIM. Those 

indows of periodicity can be spotted on the plane as dots (see 

ig 6 d). Those dots lie at one of the boundaries of the allowed re-

ion defined by the simulation, indicated with arrows in the figure. 

. Fractal behaviour unveiled by the Words-Fisher-Shannon 

lane 

Sorting arrays SA 

∗ and SA 

† (505 and 307 in Ref. [23] ) are two,

ut of the 720, that present more detail on the Fisher-Shannon 

lane than most of the others (see Fig. 2 c, d). They both spread out

he landscape of the maps on the plane, they do not present over- 

ap of different regions, and they show different visual structure 

or different regions of the control parameter. By inspecting any 

f them (see Fig. 3 for SA 

∗) one can appreciate certain repetition 

f the features that are not revealed by SA-Lehmer (See Fig. 1 b). 

hese repeated patterns suggest that this method can also unveil 

he self-similarity present in the logistic map. 

For all the previous figures we used 10 4 or 10 5 points for a wide

ange of r values ( 3 . 55 ≤ r ≤ 4 . 00 ). In Fig. 7 we show the logis-

ic map using 10 5 points in a reduced subset of r values ( 3 . 70 ≤
 ≤ 3 . 75 ), to see the finer details of the projection. Fig. 7 a shows
6 
he wide-range logistic map projected on the plane. In Fig. 7 b, the 

reen section is zoomed in, where the fractal behaviour of the lo- 

istic map is noticeable. One can recognize the same pattern re- 

eating, in the form of triangular structures that move down the 

lane, and get smaller and smaller as the control parameter r in- 

reases and the projection on the plane goes down in FIM. Fig. 7 c

ooms in into the rectangular section of Fig. 7 b, to appreciate more 

etail. 

The logistic map equation can be transformed into that of the 

aldelbrot set, z n +1 = z 2 n + c, by means of the change z n = r( 1 2 −
 n ) . From this, the self-similar behaviour of the logistic map can 

e explained through the fractality of the Mandelbrot set [26–28] . 

evertheless, it is remarkable that the words, which lose part of 

he time series information and only keep its temporal correla- 
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Fig. 8. Fisher-Shannon plane using SA-Lehmer for the logistic map. (a) Whole 

chaotic region of the logistic map. The dashed rectangle is zoomed in (b), where 

the fractal behaviour is clearer. (c) Fractal behaviour of the logistic map depicted 

with SA † . 
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ions, can also extract the self-similar essence through the Fisher- 

hannon plane. Certainly, to appreciate this, one needs to compute 

 large density of r values for the projection. The sorting array can 

ake a difference in this direction, as one can intuitively guess 

ome self-similar behaviour from SA 

∗ ( Fig. 2 d) while none can be 

ppreciated from SA-Lehmer ( Fig. 2 a). 

Once we have seen that, for SA 

∗, the ordinal-pattens-based 

isher-Shannon plane can detect fractal behaviour in these chaotic 

aps, we can explore other sorting arrays to look for self-similarity 

n the dynamics. Fig. 8 a and b show the complexity plane using 

A-Lehmer for 10 5 points for the logistic map. In it we can also 

ppreciate a repeating pattern in the same range of parameters as 

n Fig. 7 . The fact that we are using a different sorting array makes

he repeating pattern be different in this case, but the underlying 

ynamical behaviour is clearly captured. 
7 
Similar results are found for other sorting arrays for the logistic 

ap, and similar results are found for the other chaotic maps that 

resent fractal behaviour through period-doubling route to chaos. 

ig. 8 c shows the same fractal behaviour, although with a different 

attern on the plane, for the logistic map with SA 

† . 

. Conclusions 

To summarize, we have investigated the relevance of sorting the 

ords of dimension D = 3 and its impact on the Fisher-Shannon 

lane when computing PE and ordinal-patterns-based FIM. First we 

ave found that interesting features that had been highlighted in 

ecent research is robust to all sorting protocols: ordinal-patterns 

isher-Shannon projections help detect and classify different dy- 

amical regions in chaotic maps. Also, the non-invertible maps 

tudied present a common fingerprint on the plane when plot- 

ed with the same words order, independently of which order. The 

andscape of the fingerprint depends on the sorting array but it is 

he same for all the iterative maps considered. 

Further, whilst higher order analysis ( D = 4 , 5 , 6 , . . . ) is able to

apture more features of the dynamics, a suitable choice of order 

or lower dimension ( D = 3 ) can attain the same level of detail,

hile saving computational resources. 

Looking at the dependence on the control parameter of the 

ords probabilities we have extracted internal symmetries hidden 

n the chaotic dynamics of the maps. These symmetries are re- 

ated to time inversion, and rotation symmetries, and impose con- 

traints in the probabilities of the words, even in chaotic regions 

f the maps. These symmetries allow us to simulate the projec- 

ion of the maps on the ordinal-patterns Fisher-Shannon plane. The 

imulations find the allowed region on the plane for the complex 

ynamics of any dynamical system with those symmetries. There- 

ore, given a new chaotic system that presents those symmetries 

e could determine the expected region where to locate it on the 

lane. 

By exploring the complexity plane with more informative sort- 

ng arrays (such as SA 

∗ and SA 

† ) finer details can be appreci- 

ted, such as self-similarity. Although fractal behaviour in period- 

oubling route to chaos systems is well known, it is remarkable 

ow this technique can easily portray it. Also, the fractal behaviour 

s present independently of the sorting array. Of course, there are 

ome SAs that capture those features in a clearer manner. We want 

o stress that, while some SAs can present the landscape of the 

ystem in a compressed, narrow region, with plenty of overlap, 

ther SAs present the system more spread out. The latter makes 

t easier to characterize and distinguish different dynamics, which 

lso applies also to detecting self-similarity. 

One interesting aspect of this research that would be of inter- 

st to explore is to find a physical or mathematical generic method 

o determine which SA is optimum, i.e., presents a wider land- 

cape or a broader range for FIM values. We have seen that this 

elps distinguish and characterize the complex dynamics. We have 

ried several criteria for find suitable SA protocols for D = 3 , such 

s minimizing the distance to Gaussian white noise, or maximizing 

IM. Although some of the criteria lead to SAs that seemed to be 

etter than SA-Lehmer, none of them gave as much detail as that 

roduced by SA 

∗ or SA 

† . 

Another interesting aspect to explore is to generate a general- 

zation to D = 4 of SA 

∗ or SA 

† . For D = 4 there are 24 words, and

ore than 6 . 2 × 10 23 different sorting arrays. We have used SA- 

ehmer to show that higher dimensions can extract more details 

f the complex dynamics. It is reasonable to think that there are 

As of D = 4 that can do a better job. 
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