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ABSTRACT

Ordinal patterns are a time-series data analysis tool used as a preliminary step to construct the permutation entropy, which itself allows the
same characterization of dynamics as chaotic or regular as more theoretical constructs such as the Lyapunov exponent. However, ordinal
patterns store strictly more information than permutation entropy or Lyapunov exponents. We present results working with the Duffing
oscillator showing that ordinal patterns reflect changes in dynamical symmetry that is invisible to other measures, even permutation entropy.
We find that these changes in symmetry at given parameter values are correlated with a change in stability at neighboring parameters, which

suggests a novel predictive capability for this analysis technique.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0037999

Nonlinear dynamical systems can be regular, stable, and simple
as well as chaotic, unstable, and complex and sometimes switch
between the two behaviors abruptly as a function of parameters.
Among the techniques useful in distinguishing between these
very different dynamics is computing the so-called permutation
entropy (PE) for the system. Here, the time-series associated
with a dynamical observable is first converted into a discrete set
of observations about extreme events (maxima or minima, for
example), and the relative length of the time-spacing between
these events is then used to construct “ordinal patterns” or words.
The PE is the entropy associated with the probability distribution
of these words. The probability distributions themselves contain
strictly more information than does the PE. In our work, we show
that the probability distributions of words can be analyzed to dis-
cover changes in dynamical symmetry in chaotic regimes (and
stable regimes). We show that in fact the growth of symmetry
in word probabilities are quantifiably more frequent when the
system is about to transition to stable behavior at a nearby param-
eter, thus allowing for the possibility of predictions beyond that
of the usual techniques.

I. INTRODUCTION

Nonlinear dynamical systems display a rich variety of
behaviors. Within such systems, the dynamics can be regular,

repeating periodically where the periodicity can be simple or high-
order, or else repeating quasi-periodically. These dynamics can also
be stable such that a small perturbation or error in the specifi-
cation of initial conditions do not grow or qualitatively change
the behavior. Long-term predictability is only possible under these
circumstances. However, such systems often evolve in a chaotic
(bounded and non-periodic) and unpredictable manner such that
small errors do grow exponentially rapidly; this is quantified by the
existence of a positive definite maximal Lyapunov exponent (LE) of
the dynamics that measures the sensitivity to initial conditions and
is the inverse time scale for predictability. Chaotic trajectories are
algorithmically complex' in that any recorded time-series for a given
observable cannot be compressed by an arbitrary factor. In contrast,
regular systems do not have positive LEs and are algorithmically
simple. Typically, we see both kinds of behavior: If there are co-
existing attractors, this can occur as a function of initial conditions.
In other situations, the dynamics can switch back and forth between
the two abruptly as a function of system parameters. The sensitivity
to change of parameters can also strongly affect controllability and
dynamical response.””

Since such nonlinear systems are ubiquitous in nature, occur-
ring, for example, in mechanical structures such as bridges and in
physiological systems, apart from the wide range of physics applica-
tions, identifying the difference between the two kinds of behavior
and the possibility of a transition between them can, therefore, be
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of literally vital importance. However, LEs are difficult to access in
experimental or observational situations since they are a theoretical
construct that requires access to the fiducial dynamical trajectory
itself and its tangent space—that is, its response to infinitesimally
small perturbations. Techniques based on extracting the informa-
tional complexity directly from experimental observations have
been developed over the years to address this challenge.’'’ In partic-
ular, the permutation entropy (PE)” computed from the probability
distribution of ordinal patterns (or “words,” defined more care-
fully below) constructed from the time-series has been shown to be
a suitable alternative for LEs, particularly, in following parameter
dependencies, including applications to semi-classical problems. "’

Intriguingly, in constructing the PE from ordinal patterns,
information is compressed: that is, the probability distributions and,
particularly, their dependence on parameters contain more infor-
mation about the dynamics than the PE such that it is possible to
go beyond the simple classification into “chaotic” and “regular.”
Thus, ordinal patterns can be helpful in understanding the sys-
tem’s dynamics in situations involving experimental time-series of
known dynamics and changeable parameters,'””'® where one might
seek to understand the structured behavior of the system beyond the
existence or lack of chaos or where one might not have access to LEs.

In this paper, we present results from a study of the complex
dynamics of the paradigmatic Duffing oscillator aimed at character-
izing the information hidden in the probability patterns of words
and uncover some potential values for this information. We start
from the observation that changes in word frequencies arise from
a change in temporal symmetries, which we then capture with
symmetry-based characterizations of word probability distributions.
Changes in the behavior of these criteria as a function of dynam-
ical parameters are visually observed to be—and then quantifiably
correlated with—a chaos-stability transition at neighboring parame-
ters, which is one of our main results. When we compare some well
known techniques (LEs, PE, Poincaré sections, Fourier spectra of
time-series, and phase space diagrams) applied to our system, we do
not observe such correlation in these other measures. We then dig
further into approaches intended to capture temporal correlations
in the time-series to see if the patterns visible in word populations
can be understood better. Specifically, we show word probabilities
can be derived from Interval Trio Maps (ITMs), a generalization
of a return map where the probability distribution of consecutive
inter-event intervals is mapped into a higher-dimensional space
such that changes in probabilities correspond to change in clus-
tering in sectors of the ITM space. We also consider Generalized
Poincaré Sections (GPSs) that can be understood as the projection
of the dynamics into a subspace following an event-driven criterion.
While these latter new analysis techniques contain novel informa-
tion complementary to that from other techniques, they provide
similar results and also seem to fail to display the correlation seen
in word probability distributions. Thus, probability distribution of
ordinal patterns not only capture signatures of temporal correla-
tions and memory in complex dynamical systems'>'*'® but also
provide information about the system not available with other tech-
niques, in particular (precursor) signals about qualitative dynamical
transitions as a function of the parameter.

Below, we first describe the Duffing oscillator and the known
analysis tools we use to study it, focusing, in particular, on the

ARTICLE scitation.org/journal/cha

permutation entropy and ordinal patterns, and present our ini-
tial results from scanning parameter space. In Sec. 1], we describe
the detailed analysis of word populations and introduce the new
symmetry-based metrics, the behavior of which we compare to the
behavior of the PE and the LE. We then discuss the standard tech-
niques and introduce some new analysis techniques—the GPS and
ITM—and compare their results to those from words. We conclude
after a short discussion including the potential applicability of these
new techniques.

Il. WORDS IN THE DUFFING OSCILLATOR

The Duffing oscillator is a paradigmatic model'” of a damped
and periodically driven nonlinear oscillator, completely character-
ized by trajectories in a phase-space defined by position, momen-
tum, and time, or x[t], p[t] = x[¢], and t. We study here the bi-stable
version, where the oscillator can, in principle, travel between two
potential wells. These dynamics are defined by

%+ dx + ax + bx’> = gcos wt, (1)

where we have chosen default dimensionless constants of stiffness
a = 1, nonlinearity b = —1 and damping d = 0.3. For the detailed
studies we present below, we also fix the external driving frequency
at w = 1.2 and scan its amplitude g across a range chosen to show a
variety of behaviors. Generically, all results carry into other param-
eter regimes, even though we do not present them here. In this
system’s parameter space, there exist distinct regions or bands of
chaos and regularity, where the regularity can arise from global sta-
ble attractors that are either simple or high-order periodic orbits. We
take care to simulate the dynamics to discard initial transient behav-
ior (though there always remain the possibility of “long transients”)
by using simulation runs of t = 10 000. This is particularly impor-
tant, for example, in constructing Lyapunov exponents that we do
using the method laid out by Wolf.°

To construct words or ordinal patterns, we need to select events
in the time-series that characterize the dynamics on some natu-
ral time scales. Specifically, from the time-series for the position,
we record the time-values of local maxima or “peaks” in x(f) as
the events and record properties of these events, in our case, the
lengths of time between peaks or “interpeak intervals.” In this pro-
cess of selecting specific points in the time-series, we are discarding
other, redundant points. A certain amount of data compression is
involved, which is important in extracting global patterns that may
be invisible in the full data: For example, Poincaré section sample
trajectories—usually at natural turning points of the dynamics—and
thus reveal periodicity or quasi-periodicity.

Sequences of interpeak intervals determine the words. That
is, words are defined by considering groups of n consecutive or
semi-consecutive (where one would skip every other or every third)
events in a time-series, which are then ranked within the group
according to some selected criteria.” In our case, we choose n =3
so that the words are 3-dimensional (i.e., they are constructed from
trios of events), consecutive (not skipping regular events), and rank
interpeak intervals. For instance, if the first of three interpeak inter-
vals is of the middling length, the second is the shortest of the
three, and the third is the longest, this would be categorized as a
“1-0-2” type word so that we have one incident of the word w;g,.
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It is easy to see that there are thus six types of 3D words: wyy,,
Woa1> Wi02> Wi20, Wao1, and wy19, whose relative populations across
the time-series is the quantity of interest. We choose n =3 for
practical reasons: we can confirm empirically that 2-dimensional
words do not yield detailed structure, there being only two types,
whereas 4-dimensional and beyond subdivide dynamics too much
to be useful. This is another example of judicious choice of infor-
mation compression being necessary to see patterns. We should also
note that marginal cases where two or more intervals in the trio were
of equal length within the accuracy of our simulation are recorded
as being wy;; or periodic words. In what follows, we have excluded
periodic words, though depending on the goal of the words analy-
sis, some researchers choose to remove them, add them to another
word’s population, or treat them as experimental uncertainty; we
also note that in our case, they are well-defined and abundant.

Already words have been fruitfully applied to the Dufting oscil-
lator to show that permutation entropy, derived from word popu-
lations, tracks chaos and stability much like Lyapunov exponents’
and detects certain changes in the dynamics that LE cannot." We
note that the attempt to find further structure in word populations
beyond the PE is not new: For example, Bandt'*'"” has studied spatial
3D words and constructed various functions from their populations,
as discussed below.

We start with some initial results from our parameter scan,
focusing on varying g from 0.25 to 0.60 in increments of 0.01; this
range shows several transitions between bands of regular to chaotic
behavior of relevance to our study. We show here LEs (see Fig. 1),
word populations (see Fig. 3), and PE (see Fig. 2), which is calculated
from word populations P, for each word w; of dimension D as

P,, log PW1
Z log(D}) @

This construction makes clear how the PE embodies a compression
of information about word populations, whence there is arguably
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FIG. 1. Plot of the Lyapunov exponent as a function of the driving constant g.
At the g-values of 0.41, 0.42, and 0.54, the chaos is transient, as confirmed by
running the oscillator slightly beyond ¢ = 10 000.
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FIG. 2. Plot of permutation entropy as a function of g, calculated from word pop-
ulations. Note the broad agreement with LE, in that parameters with low LE tend
to have permutation entropy below 0.9.

more information about the dynamics in the distribution of words
than is visible in the PE. As baselines, we compare the parame-
ter dependence of these quantities with the traditional measure of
LEs. These exponents measure the sensitivity to perturbation of
the dynamics, and characterize the (exponential) rate at which two
slightly different initial conditions separate in phase-space. While
the number of Lyapunov exponents depends on the number of
dimensions in the dynamics, the focus is typically on the largest,
which is positive for a chaotic system. We find indeed that LE and PE
scans show the same structure of chaos and stability bands, although
their agreement is imperfect in the presence of long transient chaos.
We term this behavior as long transient chaos because the dynamics
collapse into stability sometime after t = 10000 time, unlike sta-
ble regions which manifest as regular much faster, and fully chaotic
regions that remain so for seemingly indefinite times. Long tran-
sient chaos at g = 0.41 — 0.42 is nearly indistinguishable from chaos
through the PE but at g = 0.54, the PE treats it as full stability, even
though the corresponding LE is higher than at 0.42.

The scan of word populations, on the other hand, stand out
from the PE and LE scans. Not only does this follow the transitions
from regularity, it also points to the existence of different types of
chaos (as well as different types of stability). For example, compare
g = 0.32 with g = 0.34, which are both chaotic according to both
the LE and the PE calculations. However, at ¢ = 0.32, we find that
the word populations are distributed roughly evenly such that their
values could be the result of random chance, while at g = 0.34, the
dynamics shows a clear systemic preference for certain three words
over certain other three, a preference that becomes even more clear
and absolute as the dynamics become stable at g = 0.35. In fact,
this pattern persists in general: word populations seem to become
more ordered or structured often in the chaotic regime. Our first
observation is that this increase in order seems to happen at param-
eter values, which are near g values where stable orbits exist (in this
case at g = 0.35) that is closer to g = 0.34 than the more disordered
g = 0.32. This and other examples are visible in Fig. 3.
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FIG. 3. Plot of word populations as a function of g, with stable or transiently
chaotic parameters highlighted in gray. Note that in some cases, the sum of the
populations is less than 1, due to an abundance of consecutive interpeak inter-
vals that were nearly exactly equal (w444 not plotted) and, therefore, could not be
ordinalized. The g-values 0.30, 0.34, and 0.50 are chaotic, as shown in Fig. 1, but
exhibit certain groupings that mimic their stable neighbors.

These results and, in particular, the changes in the dynam-
ics are still difficult to parse properly. To better clarify the changes
that word populations exhibit, we dig deeper using two methods of
grouping word populations using “symmetry groups,” which we rig-
orously quantify and explicate in Sec. II] but motivate here. We have
chosen these symmetries, as opposed to other inter-word relation-
ships, essentially empirically, based on their apparent prevalence in
the observed data (Fig. 3), and their intuitive definitions. The first
type of symmetry we consider is rotational symmetry, which occurs
when the populations of wpi2, Wiz, and wyg; are similar to each
other, as are those of wg,1, W10, and wyg,, but these two population
groups are dissimilar to each other. Mathematically, high rotational
symmetry is characterized by

Po1a = Piyo = Py # Poyy = Pyip = Pig. (3)

This rotational symmetry is intuitively a weak indication of period-
3 orbits in the time-series; that is, if each word leads into another in
a chain, e.g., 012012012 - - -, we would obtain an equal abundance
of Wo12, W12, and wyg;. Since words are ordinal (that is, constructed
from a coarse-graining of the time-series), and since the presence of
these symmetries is relative but not absolute, it is not an absolute
indicator of true period-3 orbits. The second type, mirror symme-
try, occurs when populations of wg, and w;;o are similar, as are
those of wy,; and wyy, as are those of w;g, and wy, and all three of
these pairs are dissimilar to each other. Mathematically, high mirror
symmetry would follow from

Py1; = Py1g # Poy1 = Piyg # Proz = Poors (4)

corresponding to a tendency for small-scale events in the time-series
to resemble themselves, regardless of the direction of time. This is a
weak form of time-reversal invariance. For example, we see that at
g=0.27 and g = 0.35 — 0.36, both of which appear only as stable
to the LE (Fig. 1), exhibit near-perfect rotational symmetry, wholly
different from nearby g = 0.29 and g = 0.38, which are also simply
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stable according to the LE, but in contrast have equal populations of
the two mirror symmetry groups and total absence of the third. This
symmetry is correlated to differences in the time-series and phase
diagrams in the stable regime (Fig. 4). However, similar changes in
symmetry do not visibly hold for chaotic phase diagrams. Before
we turn to the more detailed discussion of these symmetries in the
dynamics, we remark that some types of stability prevent the forma-
tion of certain types of words altogether: if the oscillator has perfect
period-1 or period-2 orbits, then equality between nearby interpeak
intervals will prevent ordinalization of 3D words. This phenomenon
is obvious in word population graphics like Fig. 3 because the sum of
the six words is significantly less than 1 at these locations, such as at
g = 0.52. This is because during the word-counting process, we des-
ignated all marginal cases as “periodic words” or wy;;, which counts
against the fractional populations of all other words, but which is not
shown in Fig. 3.

lll. QUANTIFYING SYMMETRY

We can formalize the notions of the existence of rotational and
mirror symmetry groups in the dynamics by computing statistical
variances with the average populations Pg;, Pra, Pari> Par2> Pass> Pails
defined below

= Po1; + Py + Paoy

PRI = 43 > (5)
- P. P, P
Pry = 210 + Poa1 + 102) 6)
3
Py = Po1; + Py ’ )
2
Py = M’ (8)
2
Py = Py +P102’ )
2
_ P P P P P. P
Py = o012 + Po21 + Pioz ‘g 120 + Poo1 + 210 (10)

Note that because we omit Py, it is not necessary that Py = é;
hence, we treat the quantity as its own object. We use these average
populations and the individual word populations to construct sta-
tistical variances that represent symmetry, giving us four measures:
rotational variance (), rotational hierarchy (¥), mirror variance
(&), and mirror hierarchy (&),

= 2 = 2 = 2
_ (Poiz = Pri)” + (Pr2o — Pri)” + (Paor — Pri)
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FIG. 4. The phase diagrams for g = 0.27 (left) and g = 0.29 (right), showing the physical phenomena which lead to rotational and mirror symmetry, respectively. Note the
three x axis crossings at g = 0.27, signifying a period-3 orbit, and the rough vertical symmetry of g = 0.29, showing geometrical, if not topological, time-reversibility.

- - 2 = - 2 = - 2
= _ Pay — Pan)” + (Prp — Pan)” + (Pais — Pan)
—~ — 3 .

Rotational variance tracks the variance of each word relative to the
average of its rotational symmetry group, and mirror variance does
the same with mirror symmetry groups. Likewise, rotational hier-
archy measures the variance of each rotational symmetry group’s
average population against the average for all six words; sim-
ilarly, mirror hierarchy measures each mirror symmetry group
average. That is to say, if the population of certain words agree
with other words in their symmetry group, then variance, ¥
or &, will be low. If the system has a clear preference for one
symmetry group over others, then the hierarchies, ¥ or E, will
be high.

Figure 5 quantifies these symmetries as a function of the con-
trol parameter g. In it, we can appreciate how chaotic regions in
which words are somewhat ordered, such as 0.34 and 0.50, have
significantly higher hierarchy and lower variance in one type of
symmetry than in other chaotic regions (the latter, therefore, being
arguably “truly” chaotic). Stable regions (LE < 0) have even higher
hierarchy. This brings home the significance of our result that—at
least on the basis of this exploration of the Duffing oscillator—by
measuring the symmetry of the dynamics, we can conclude that
the existence of a rotational or mirror hierarchy value between
0.002 and 0.007 or greater signifies the existence of stable param-
eter regimes in the neighborhood (thus, this is “pre-stable chaos”),
while hierarchy values closer to 0.01 or greater represents true
stability.

(14)

The advantage of this grouping and quantifying words this way
is that, if any meaningful underlying order in the words increases
near stability, it would be shown through these measures more
clearly, and numerically, than by judging word populations by eye.
The philosophy is similar to that of Bandt’s work'® on functions

0.03
0.025
0.02
o
5 LE<0.05
£ 0.015 —
£ b
& —
0.01 ———-f
0.005
o~
0
N I A N - B N N - - B A
N NN MmN MmN S S S S Y NN N NN

FIG. 5. Plot of symmetry measures as a function of g. Because of the orthogo-
nality of rotational and mirror symmetry groups, rotational variance often agrees
with mirror hierarchy, likewise rotational hierarchy and mirror variance. However,
each variance is never less than the opposite hierarchy.
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Bandt Functions

FIG. 6. Plot of Bandt's functions as a function of g, with stable g-values high-
lighted in gray. In the symmetries of Fig. 5, note the increase in one hierarchy, at
0.30, 0.34, and 0.50, relative to their chaotic neighbors. Similarly, in Bandt's func-
tions, the absolute values of up-down measures B and § increase at the same
points.

defined as
B = Por2 — Paios (15)
T = Py + Py — %a (16)
Y = Pio2 + P12o — Poz1 — Pao1» (17)
8 = Poa1 + Pioz — Piao — Paons (18)

where 8 is termed up-down balance, 7 is persistence, y is rotational
asymmetry, and § is up-down scaling. There is a clear correspon-
dence between the physical significance of Bandt’s y and our &, as
time-reversal asymmetries, although Bandt names y as “rotational
asymmetry.” Thus, symmetry measures (specifically either W and
¥ or E and &) and Bandt’s functions condense word population
information into a more concise, readable set of statistics, which are
distinct from PE, and are useful in tracking temporal orderings and
structure in the dynamics. In Fig. 6, we see the functions introduced
by Bandt in Ref. 18. Compared to what we see in Fig. 5, the Bandt
measures seem unable or only weakly to discern dynamical transi-
tions, at least in this complex system—that is, there is an increase
or decrease of B or § in the chaotic regime right before g = 0.35
and g = 0.51, but there is no visible change right after g = 0.29 or
g =0.38.

In Fig. 5, we see correlation of increased symmetry (as mea-
sured by E, W) as a function of g with neighboring chaos-stability
transitions (in LEs or PEs), but this is imperfect, as false negative and
false positive signals of nearby stability do occur. Explorations of the
same quantities as above with variation in other parameters such
as @ (not shown) also confirm this pattern of words always being
ordered in the stable regime, as shown in Figs. 1 and 3, but only
being ordered within the chaotic regime typically #near an upcoming
transition to regularity. To quantify this “typicality” of correlation in
the parameter neighborhood between symmetry and dynamical sta-
bility, we compute the quantities defined below, and shown in Fig. 7.
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FIG. 7. The controlled cross-correlation of the permutation entropy with the sym-
metry measures, across offset Ag, along with auto-correlations for PE (left inset)
and all symmetry measures (right inset). The horizontal range (Ag) of the insets
is the same as that of the main figure. The local minima around +0.015 for W
indicate that rotational symmetry increases near low permutation entropy with an
offset of | Ag| ~ 0.015. This means that we can anticipate a chaos-stability shift
in parameter space using symmetry measures and succeed with some reliability.

We seek to measure the degree to which the functions PE(g) and
X(g)-X being a general form of the measures &, &, y, W—overlap,
including as X(g) is shifted Ag with respect to PE(g). That is, does an
increase in a symmetry measure indeed quantifiably correlate with
a neighboring shift in PE from chaos to regularity? If so, this would
indicate that the information contained in the dynamical system for
a specific value of g is consistent with its dynamics at a neighbor-
ing value of g, even across a chaos-stability transition. Because this
information is accessed through symmetry measures, it would also
mean that symmetry measures have quantifiable power in predicting
chaos-stability shifts.

We first compute the auto-correlation of each symmetry X « X
with itself. We do the same for the PE. These are shown in the insets
of Fig. 7 as functions of the parameter offset Ag. The general form
of a correlation integral across g is given below

x©+39) = [ g+ A9y (19)

To account for the finite range in g, we take repeating boundary
conditions; that is, for both factors in the correlation functions, we
wrap around the standard g-range of 0.25 < g < 0.60, with the oft-
set Ag determining where the two functions overlap. Of course, this
results in an artificial increase in the auto-correlation/self-overlap
as |Ag| gets very large, with edge-effects visible at Ag = £0.175.
To suppress the false signal from this artificial effect, we consider
correlations only for [Ag| < 0.1.

We see in the auto-correlations that PE has self-agreement
(peaks) at offsets of about |Ag| &~ 0.10, which makes sense given the
apparent average size of the chaos-stability windows shown in Figs. 1
and 2. Symmetries show the same, though smaller peaks at |Ag|
~ 0.09 and also anti-correlations (a local minimum in the
correlation function). Specifically, the rotational hierarchy W is
moderately anti-correlated with itself at an offset of [Ag| ~ 0.015,
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FIG. 8. The generalized Poincaré sections for g-values 0.50 and 0.51. The implied time-delayed symmetry at g = 0.50 is a result of the fact that GPS takes data at both
peaks and valleys in the time-series. Although few points are visible at g = 0.51, the amount of information depicted is roughly equal to that of g = 0.50, greater than 1500

data points each. At g = 0.50, the LE is positive, while at g = 0.51, it is zero.

and its autocorrelation falls to zero at offsets | Ag| & 0.05. This anti-
correlation is consistent with symmetries increasing between chaos
and stability, with chaotic and stable windows being, on average,
0.05 = |Ag| away from each other.

Finally, we construct a “controlled” Cross Correlation K
between the PE and all the Symmetries X, which includes compen-
sating for auto-correlation scales for the PE and
Symmetries:

(PE  PE)(X * X)

KX) = PExX . (20)
This is the central graph in Fig. 7. Note that at an offset of
Ag ~ £0.015 there are local minima in W « ¥ and K(W¥), indicat-
ing that W disagrees with the PE especially at these values. That
is, increases in W at one g-value correlate to decreases in PE at
a g-value lesser or greater by 0.015, and thus the behavior of the
symmetry in word populations is correlated—albeit weakly—with
nearby chaos-stability shifts. This “dip” at Ag & 0.015 is exactly con-
sistent with our visual observations and discussions above. To the
best of our knowledge, this is a novel instance of an ability to “peer
around the corner” in parameter space to identify chaos-stability
transitions.

IV. COMPARISON WITH OTHER MEASURES

To understand whether this potential ability to “peer around
the corner” at the existence of stable behavior at a neighboring
parameter is visible in other more standard measures and diagnos-
tics, we have compared what we see in the word populations with
a variety of some of the most common tools used to distinguish
between chaos and regularity. Specifically, we have considered if
such behaviors are visible in Poincaré sections (PSs), and Fourier

transforms (FT's). PS can be of various sorts, but for a driven system
it measures the position and momentum of a system stroboscop-
ically at regular intervals determined by the system’s natural fre-
quency. It is also typical to use Fourier transforms on observational
time-series to characterize the dynamics via its spectral decompo-
sition. While we do not report details, neither of these showed the
sort of distinct change in behavior visible in word populations, and
so we searched further in order to understand if variations on the
standard diagnostics might better help us understand our results
in the previous section. To this end we developed (somewhat) new
quantifiers aimed at getting more direct insight into the temporal
behavior of interpeak interval, specifically Generalized Poincaré Sec-
tions (GPSs) and Interval Trio Maps (ITMs). Generalized Poincaré
Sections (GPSs), like normal PS, represent the intersections of the
trajectory with a plane in phase-space; in this case, unusually for a
driven system, we record x[t] and t mod %” values whenever p([t]
equals zero (as opposed to using a certain phase for the sinusoidal
driving for recording x and p). This is merely a rotation of perspec-
tive on the trajectory: instead of displaying place and speed at regular
time, it shows place and time at regular speed. The relevance of shift-
ing to this GPS is that it records time values at peaks and valleys of
the oscillator, thus recording in fact the same sort of information as
used to construct interpeak words, and thus arguably liable to show
similar behavior.

Similarly, interval trio maps track interpeak intervals much
like words, but display numerical information, rather than merely
ordinal. That is, an ITM is a 3-dimensional representation of trios
of consecutive interpeak intervals: every trio is a point in interval-
space, where each dimension of that space represents the length of
the corresponding interval in the trio. The interval-space of ITMs is
divided by three diagonal planes, where two intervals are of equal
length: 1st-2nd, 1st-3rd, and 2nd-3rd, equivalent to the planes

Chaos 31, 023104 (2021); doi: 10.1063/5.0037999
Published under license by AIP Publishing.

31, 023104-7


https://aip.scitation.org/journal/cha

Chaos

g=0.50
3rd
2nd Interval
Interval
15t I 15.0
] : 125
10+ ) 10.0
. J ' 7.5
L &'{' 1
St Iso
2.5
0 L . : 1st Interva
5 10 15

ARTICLE scitation.org/journal/cha
g=0.51
3rd
2nd Interval
Interval
L 14
12
war 10
L] o 8
5_
L] I G
4
0 : ; . 1st Interva
5 10 15

FIG.9. The Interval Trio Maps for g-values 0.50 (positive LE, i.e., chaotic) and 0.51 (zero LE, i.e., regular) as a function of the first two interval. The third interval is represented

by color, with warm colors corresponding to longer third intervals.

defined by the equations
X=yx=z,y==z 21

These diagonal planes divide ITMs into six sectors (similar to
octants, but only six because the three planes are not orthogonal),
with every point in each sector mapping to an instance of an ordi-
nal pattern or word such that the population associated with a given
word amounts to the count of points in a given sector.

We used the same time-series data across the same range of
g for ITMs (see Fig. 9) and for GPSs (see Fig. 8) as for word pop-
ulations. We find that indeed I'TMs (as shown), LEs, and PSs, as
well as GPSs (as shown), all behave similarly with regard to chaos-
stability shifts, in that they show the presence or absence of chaos as
a binary—that is, whether or not there is chaos. This is in contrast
to the acute sensitivity visible in word populations that quantifies
greater and lesser degrees of chaos and different types of stability
(even at the same LEs). This is significant because it means that
words show a type of structural distinction that is invisible to other
metrics. The ITM and GPS both exhibit visual changes that can be
described qualitatively as a cloudiness or smearing at the same g-
and w-values as the PS, with small, gradual changes of shape across
chaotic zones. PS, because they project a large number of data points
across a phase space rather than condensing their information into a
single number, contains rather more information, but this informa-
tion often becomes obscured behind subtle changes, and again, the
clearest indicator—the smearing effect—only indicates the presence
or absence of chaos and perhaps the size and range of the attractor
at a given system parameter. This agreement between GPS and PS
is expected, albeit less interesting than if they had disagreed in some
way.

ITMs contain strictly more information than words (because
words can be directly derived from ITMs, but not vice versa) but
do not noticeably show this sensitivity to greater or lesser degrees
of chaos, which may initially be puzzling. However, more careful

analysis of the ITMs allows a little more insight into what we have
observed. In particular, smooth changes in the ITMs which do not
visibly alter it can sometimes yield drastic changes in word popu-
lations. This is because which word an interval trio belongs to is
dependent on its location as a point in interval-space and continuous
changes in location can map to discrete changes in which sector to
which words are assigned. As a cusp example, if an Interval Trio is on
or near the boundaries that coincides with all three planes, then all
three intervals are of equal length and the word created is wy;, but
a small deviation from this equality by any two of the three inter-
vals could move the point into one of the six sectors. Thus, word
population changes amount to changes in higher-order correlations
in the statistics of ITMs, and the ordinalization (and data compres-
sion) implicit in analyzing word populations allows us to pick out
the effects of slight regime changes in the high-order properties of
ITMs. This effect seems to be how word-derived measures provide
an advantage in predicting stability in nearby parameter regimes
for a system otherwise only understood as being chaotic, and this
advantage is what we observe via the symmetry measures.

V. CONCLUSION

To summarize, we have investigated the parameter dependence
of chaos and stability and transitions between the two for the Duff-
ing oscillator by computing a variety of measures, including words
as a function of parameter. In our study, word populations, and their
derived symmetry measures, are seen to be visibly sensitive to regime
changes within and between stability and chaos, beyond the blunt
binary measures (of chaos or stability) displayed by the LE, PS, FT,
and ITM. At least for this system, an observed increase in symmetry
measures signals an increased chance of success if we search for reg-
ular behavior at nearby parameter values, even though this is not a
causal measure. That is, word population symmetry analysis can be
used to “peer around the corner” to anticipate a change in dynamics
in the parameter space.
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It might seem that by selecting only certain events from a time-
series we lose information about the system dynamics. However, as
all analysis dependent on this ordinalization of data shows, this sort
of compression to events provides efficient and necessary indica-
tors of the structure of the dynamics. This is what happens when
projecting Poincaré sections, for example. On the other hand, we
have also seen that something like the PE seems to compress the
data so much as to lose other valuable information. Furthermore,
of course, this technique can be specially useful in analyzing exper-
imental data. It is relatively difficult to compute the LE in those
cases, and moreover, word populations are robust to unavoidable
experimental noise.

We argue that this weak correlation is a real and valuable
effect by considering thought experiments in practical situations
with such chaos-stability transitions. The correlation found between
word symmetries in chaos and nearby stability would be a tangi-
ble advantage. If, for instance, engineers seek to stabilize a bridge
against chaos in the presence of small increase in traffic or driving
amplitude, an LE or PS, or even an FT, would only say whether the
current oscillations are chaotic or not. Words, on the other hand,
have symmetries whose presence correlates with nearby stability
and so could help signal the appropriate change in other system
parameters. Examples would be the ability to provide changed pre-
dictive abilities for systems such as precipitation patterns under
climate change, N-body gravitational problems with non-constant
masses, and bridges swaying under varying amounts of traffic or
wind.

The limits and conditions for the utility of word analyses, espe-
cially as predictors of chaos-stability transitions remain to be tested
more widely. Other than testing other dynamical systems, of course,
we also need to consider how the observed correlation between word
symmetries and stability behaves in a higher-dimensional parameter
space, including the possible role of the resolution in the parame-
ter space that allows us to pick out these correlations. Other factors
which may be need to understand include the role of the minimum
resolution for time in the time-series, below which periodic words
grow so populous that hierarchalizing interpeak intervals becomes
inefficient. Despite these open questions, it is clear that explor-
ing word populations in dynamical time-series continues to yield a
surprising wealth of information about a system’s dynamics.
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