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a b s t r a c t 

Being able to distinguish the different types of dynamics present in a given nonlinear system is of great 

importance in complex dynamics. It allows to characterize the system, find similarities and differences 

with other nonlinear systems, and classify those dynamical regimes to understand them better. For sys- 

tems that develop chaos it is not always easy to distinguish determinism from stochasticity. We analyze 

several non-invertible maps by projecting them on the two-dimensional Fisher–Shannon plane using or- 

dinal patterns. We find that this technique unfolds the complex structure of chaotic systems, showing 

more details than other methods. It also reveals signatures common to most of the non-invertible maps, 

and demonstrates its capability to distinguish determinism from stochasticity. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Finding a quantifier to characterize complexity is a task that has 

een under discussion for several decades. Different researchers 

ave found different quantifiers that are informative for some 

ypes of systems but are not helpful for others [1–5] . One of the

ost successful ways to quantify complexity is represented by 

he causal Shannon–Fisher plane [6] , where the dynamics of the 

omplex system is mapped into a 2D plane, represented through 

ts Shannon entropy and its Fisher’s Information Measure [7–10] . 

his representation is convenient when comparison among differ- 

nt complex dynamical systems is required. It represents, in a sim- 

le visual manner, local and global information associated with the 

ynamical system. 

Shannon entropy, S, based on the PDF (probability distribution 

unction) of a time series, reflects the global behavior of the dy- 

amics, and is robust to changes in the distribution on small scales. 

t quantifies how far or close the system is with respect to an un- 

orrelated stochastic process; how ordered or random its dynamics 

s. It can be used to quantify how much one can predict the next 

alue of the time series. Normalized Shannon entropy is defined as 
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 = − 1 

ln (N) 

N ∑ 

i =1 

p i lnp i (1) 

here { p i : i = 1 , 2 , . . . , N} is the probability distribution, and 0 ≤
 ≤ 1 . N is the number of compartments the PDF has been divided 

nto. The PDF can be generated from the values of the time series, 

ut additional information can be gathered if the raw time series 

s transformed into an ordinal patterns time series [11–13] , or into 

 network [9,14,15] , previous to calculating its Shannon entropy. 

In 2002 Bandt and Pompe [16] introduced a novel method to 

ompute the entropy of a time series through a symbolic analysis, 

ermutation entropy ( PE ). In order to find temporal correlations in 

he dynamics, they considered consecutive values of the time se- 

ies and, comparing their relative magnitudes, transformed them 

nto a sequence of ordinal patterns. From the probabilities of each 

f the ordinal patterns one can compute the permutation entropy. 

his method of calculating the entropy is very robust to experi- 

ental noise, is stable under local changes, unveils long tempo- 

al correlations in the dynamics, and allows to forecast events in a 

ime series [5,17–20] . 

In order to compute the ordinal patterns from the time se- 

ies they are compared the magnitudes of D consecutive events 

n the time sequence { x i } . For ordinal patterns of dimension D = 2

nly two patterns can be formed, i.e., ‘01’ if x i < x i +1 , and ‘10’ if

 i > x i +1 . Six patterns can be formed for dimension D = 3 , i.e., ‘012’
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f x i < x i +1 < x i +2 , ‘021’ if x i < x i +2 < x i +1 , and so on. The permuta-

ion entropy is then defined as 

 E = − 1 

ln (D !) 

D ! ∑ 

i =1 

p i lnp i (2) 

here D ! is the number of ordinal patterns of dimension D, and 

p i is the probability of the i th ordinal pattern. PE is normal- 

zed so that 0 ≤ P E ≤ 1 . For a purely random process the normal-

zed entropy is maximum, P E = 1 , while P E = 0 corresponds to a

ompletely predictable process where only one ordinal pattern is 

resent. Low values of PE indicate deterministic structure in the 

ynamics as some patterns are more likely than others. 

Fisher’s Information Measure (FIM) [21] is another measure to 

uantify complexity. It represents a measure of the gradient of 

he distribution, and therefore is very sensitive to small, localized 

hanges. It measures the rate of change of the consecutive values 

n a time series. It can be interpreted as the amount of information 

hat can be extracted from a system. For a purely ordered system 

IM is maximum, while for a stochastic process FIM is zero. It has 

hown to be a powerful tool to detect and describe complex be- 

aviors in dynamical systems [22–26] . 

For a discrete times series FIM can be defined as [7,9,26–28] 

 IM = F 0 

N−1 ∑ 

i =1 

(
(p i +1 ) 

1 / 2 − (p i ) 
1 / 2 

)2 ; (3) 

here F 0 = 1 if p i ∗ = 1 for i ∗ = 1 or i ∗ = N, and p i = 0 ∀ i � = i ∗. F =
1 
2 otherwise. 

N is the number of possible states of the system, and p i (i = 

 , 2 , 3 , . . . , N) is a discrete probability distribution set. FIM comple-

ents entropy as a quantifier of complexity as it can detect some 

ocal changes in behavior, there where entropy cannot. 

Shannon entropy and FIM have recently been used combined 

n the so-called Shannon–Fisher complexity plane [7,26,29] . This 

lane maps simultaneously Shannon’s entropy and FIM to charac- 

erize the dynamical complexity of a system. It separates and com- 

ares different regions the chaotic dynamics of different dynamical 

ystems. It also shows trends that help characterize the different 

haotic regions as the control parameter of a dynamical system is 

aried, and helps detect transitions and bifurcations [8–10] . 

Wang and Shang [10] used information entropy in the Fisher–

hannon plane to find more structure in stock markets dynamics. 

avetti et al. [9] used the Fisher–Shannon plane, together with the 

orizontal visibility graph [14] , to study the effect of noise is sev- 

ral chaotic maps, and characterize the transition from chaos to 

oise. 

Olivares et al. [7,8] studied the Shannon–Fisher plane using 

and–Pompe ordinal patterns of dimension D = 6 , and showed 

hat the way the ordinal patterns are sorted has an effect on the 

nal calculated FIM. Because FIM measures the differences in con- 

ecutive values, when one calculates the D! possible ordinal pat- 

erns, they need to be sorted, and the protocol to sort them will 

hange those differences. They compared the effect of two differ- 

nt sorting protocols, Lehmer vs. Keller (see [7] for details). They 

ound that for some regions of the dynamics, the different proto- 

ols used showed a linear relationship between F IM L and F IM K , 

ut not in other regions. 

Here we compute the Shannon–Fisher complexity plane using 

andt–Pompe’s ordinal patterns (OPs) analysis for various chaotic 

aps. We use OPs of different dimensions ( 2 ≤ D ≤ 8 ) to calculate 

he permutation entropy ( PE ), and find that there is an optimum 

imension to characterize the dynamics. To compute FIM we use 

ehmer sorting protocol. Lehmer protocol is an extended way of 

orting the ordinal patterns in the bibliography and Olivares et al. 

7] found that it deploys more structure for D = 6 for the logistic 

ap than Keller’s sorting protocol. We also compute the Shannon–
2 
isher plane using the PDFs of the raw time series to calculate 

hannon entropy and FIM. We compare both approaches and find 

hat the OP approach is a better tool to classify and distinguish be- 

ween the complex dynamics of chaotic systems. We project differ- 

nt non-invertible maps in the Shannon–Fisher plane and find that 

ost of them cover the same locations on the plane, i.e., there is 

 signature path on the plane characteristic to most non-invertible 

aps. 

We use the same non-invertible maps as those used by Ravetti 

t al. [9] . In their paper they used the horizontal visibility graph, 

ombined with the Fisher Information Measure and Shannon en- 

ropy, to distinguish noise from chaos in different iterative maps. 

hey could separate the deterministic iterative maps from noise for 

he specific control parameter values they used. Here we go one 

tep beyond. We unveil and characterize the different dynamic re- 

ions in the maps, for a wide range of the control parameters. 

. The logistic map 

We first analyze the logistic map, x n +1 = rx n (1 − x n ) . We use

he OPs approach to calculate PE and FIM. Fig. 1 (a) shows the lo- 

istic map bifurcation diagram for 3 . 6 ≤ r ≤ 4 . 0 , using a color scale

o indicate the r value, and signify regions of distinct behavior. 

ig. 1 (b) shows the OP-FIM-PE plane, calculated using ordinal pat- 

erns of dimension D = 4 . This plane reflects different behaviors for 

ifferent regions of the control parameter r. For the lowest values 

f r considered (blue dots), we can distinguish one region where 

he system lies on a straight line in the plane, of sharp decrease of 

IM while PE changes slightly ( 0 . 45 < P E < 0 . 50 ). The system then,

s r is increased, shows a curve that increases both FIM and PE . 

n this curve there are some legs, some escapes from that behav- 

or that increase FIM and decrease PE . These legs correspond to the 

indows of periodicity in the bifurcation diagram (around r = 3 . 63 

nd r = 3 . 74 , ...). The system then enters into the large period dou-

ling route to chaos around r = 3 . 83 (green dots) indicated by a

urve towards higher FIM and lower PE , and then back to lower 

IM and higher PE . 

As r is increased further into the chaotic region (orange and yel- 

ow), the system moves to the bottom-right corner of the plane, 

f low FIM and high PE . Remember that a random process would 

ave P E = 1 and F IM = 0 . In this chaotic area we can still dis-

inguish different behaviors. The plane shows different clusters of 

imilar FIM and PE values. Between the clusters the system shows 

ome clear distinction, with some sort of bifurcation in the dynam- 

cs that can be tracked to the smaller windows of periodicity in the 

ifurcation diagram. 

This Shannon–Fisher plane computed with OPs clearly distin- 

uishes the different dynamical regions of the logistic map in dif- 

erent regions in the plane, but also displays different relations be- 

ween FIM and PE depending on the region. 

Fig. 1 also compares the Shannon–Fisher planes as computed 

ith OPs of dimension 4, Fig. 1 (b), with that computed using the 

DFs of the time series for the logistic map, Fig. 1 (c). For this latter,

00 bins were used for the PDF of the time series. While FIM and 

E show some characteristic correlations on the plane when com- 

uted using OPs (as described previously, for different values of r

hey are grouped in different, well-defined, regions on the plane), 

o clear relation is appreciable when computed with the PDFs. The 

ifferent values are distributed without showing any clear spacial 

attern on the plane. 

The regions found with the ordinal patterns are not visible 

n the PDF-Fisher–Shannon plane, no structure is distinguishable. 

ere, Fisher Information Measure lies between 0 and 0.15, and 

hannon entropy between 0.6 and 1.0. Besides the windows of 

eriodicity, indicated by the few scattered points in the upper 

eft region of the PDF-plane, the logistic map restricts to a much 
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Fig. 1. (a) Bifurcation diagram of the logistic map. (b) Fisher–Shannon plane using ordinal patterns, OPs. (c) Fisher–Shannon plane using the PDF of the time series. Control 

parameter range is 3 . 6 ≤ r ≤ 4 . 0 . We use a color scale to signify regions of distinct behavior. The OP-FIM and PE are computed using ordinal patterns of dimension D = 4 . 

The leftmost part of the bifurcation diagram (blue) encompasses the points in the OP-FIM-PE plane that make up the curve feature that sharply decreases FIM while PE 

remains with little change. As the r parameter is increased the system in the OP-FIM-PE plane follows a curved behavior that increases FIM and PE . Some legs of increasing 

FIM and decreasing PE correspond to the visits to the windows of periodicity in the bifurcation diagram. The chaotic region for the highest values of r (orange and yellow 

dots) move in the low FIM high PE region. In (c) there is no clear structure that helps differentiate the different dynamical regimes of the system. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. OP-FIM-PE plane for the logistic map for embedding dimensions of the ordinal patterns D = 2 through D = 8 . For D = 2 and D = 3 there is no clear structure and the 

system lies in the bottom-right part of the plane. For dimensions D > 3 the plane unveils the structure of the different regimes in the dynamics of the logistic map. As we 

increase the dimension of the OPs the distribution of the system on the plane presents more structure, but for D = 5 , 6, 7, there is no qualitative difference. (h) shows all 

the dimensions on the same plane. (d) through (g) show the same limits for comparison purposes. 
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arrower region, 0 < F IM < 0 . 05 , and 0 . 8 < entropy < 1 . 0 . On the

ther hand, with the OP analysis, OP-FIM extends its range to be- 

ween 0.65 and 1.0, and PE between 0.45 and 0.75. All this indi- 

ates that the OP-Fisher–Shannon plane for the logistic map gives 

ore information, and distinguishes better the complex dynamics, 

elping characterize it. 
3 
To see the relevance of the embedded dimension D of the ordi- 

al patterns in computing OP-FIM and PE , we have calculated the 

P-Fisher–Shannon plane for dimensions D = 2 through D = 8 (see 

ig. 2 ). The quantifiers for low dimensions ( D = 2 , 3) do not show

he full complex structure of the dynamical system. Higher dimen- 

ions are required to unveil the complex patterns hidden in the 
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Fig. 3. Bifurcation maps (a–c) and OP-FIM-PE planes (d–f) for other non-invertible maps (tent, cusp, and sine). (g) OP-Fisher–Shannon plane for the four non-invertible maps. 

All four systems occupy the same area in the plane, they cover the same path. OPs have been computed for D = 5 . (h) OP-Fisher–Shannon plane for Richer’s and cubic maps, 

compared to the logistic map. Logistic, cusp, sine, Ricker’s population, and cubic maps have identical structure on the plane. OPs of D = 7 are computed. The parameters 

used for the maps are those of ref. [9] . 
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ynamics. These higher dimensions detect structures on the plane, 

ith a trend towards higher FIM and lower PE as the dimensions 

ncrease (move to the upper-left region of the plane). 

For dimensions D = 5 –8 the change is only quantitative, not 

ualitative. Similar regions are equally differentiated for corre- 

ponding r values, although at slightly different points on the 

lane. This implies that similar information can be gained by com- 

uting D = 5 or D = 8 . Because of the computational effort in-

olved in computing OPs of high dimensions, and the high number 

f patterns necessary to have significant statistics, it might not be 

orth going higher than dimension five or six. 

. Non-invertible maps 

The structure present in the OP-Fisher–Shannon plane is not 

haracteristic only of the logistic map. We compute the same anal- 

sis for other non-invertible maps: 

• Tent map: x n +1 = r min { x n , 1 − x n } , for 1 ≤ r ≤ 2 . 
• Sine map: x n +1 = r sin (πx n ) , for 0 ≤ r ≤ 1 . 

• Cusp map: x n +1 = 1 − r 
√ | x n | , for 0 ≤ r ≤ 1 . 

For these maps we find similar structure and correlations be- 

ween FIM and PE , on the same regions of the OP-FIM-PE plane. 
4 
ig. 3 shows the bifurcation maps for the tent, cusp, and sine 

aps, and their corresponding OP-Fisher–Shannon planes, com- 

uted with OPs of dimension D = 5‘ . Fig. 3 (g) plots the OP-FIM PE

or these four non-invertible maps on the same plane. 

Even though the OP-FIM- PE plane for the maps in Fig. 3 (d,e,f) 

eem different at first glance, Fig. 3 (g) shows how they all oc- 

upy the same well-defined region on the plane. Fig. 3 (g) displays 

he fingerprint of these non-invertible maps on the plane. All of 

hem follow the same path with small variations, related to intrin- 

ic characteristics of each one of them. The cusp map shows the 

ost simple arrangement on the plane, and the other maps show 

ome more structure, all of it on top and around that of the cusp. 

The logistic and the sine maps, despite coming from very dif- 

erent mathematical expressions they deploy the same period- 

oubling route to chaos, and similar bifurcation maps. They cover 

he exact same places in the OP-Fisher–Shannon plane. 

The tent and cusp maps do not develop the same route to chaos 

hat the logistic or sine maps do; there is no period-doubling, and 

o clear distinctions in most of their bifurcation map. Neverthe- 

ess, the OP-FIM-PE plane manages to distinguish some organiza- 

ion and evolution in the dynamics. In the cusp map it unveils two 

ifferent regions in its dynamics. The point of maximum entropy 

orresponds to a kink in the plane, indicating a change in the be- 
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Fig. 4. (a) PDF-Fisher–Shannon plane for the tent, sine, cusp, cubic, Ricker’s population, and linear congruential generator. PDFs are computed using 200 bins. (b) Region 

around PE ≈ 1 , F IM ≈ 0 enlarged. 

Fig. 5. (a) Bifurcation diagram of the linear congruential generator computed with ordinal patterns of dimension D = 7 . (b) Bifurcation diagram of the Pinchers map. (c,f) 

Time series of the Pinchers map for before the kink, S = 2 . 5 , and after the kink, S = 3 . 4 . (d) OP-FIM-PE plane for the linear congruential generator ( D = 7 ) in color code. The 

logistic map (in red) is also shown for comparison. (e) OP-FIM-PE plane for the Pinchers map ( D = 7 ) in color code. The logistic map (in red) is also shown for comparison. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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avior that is not recognizable by simply exploring the bifurcation 

ap. 

Other non-invertible maps (cubic map, Ricker’s population 

odel, linear congruential generator) have been studied: 

• Cubic map: x n +1 = r x n (1 − x 2 n ) , for 1 ≤ r ≤ 2 . 6 . 
• Ricker’s population model: x n +1 = r x n e −x n , for 0 ≤ r ≤ 20 . 
• Linear congruential generator: x n +1 = A x n + B mod(C) , for 0 ≤

A ≤ 4 , B = 54773 , and C = 259 , 200 . 

The bifurcation diagram of the cubic and Ricker’s population 

aps (not shown) present similar period-doubling routes to chaos 

s the logistic map, and their representation on the OP-FIM-PE 

lane is identical to those of the logistic and the sine maps. 

ig. 3 (h) shows the OP-FIM-PE plane for these other non-invertible 

aps, where they are compared to the maps in Fig. 3 (g). Here we

sed OPs of dimension D = 7 . For lower dimensions the agreement 

etween Ricker’s and the cubic maps was not as clear as for D = 7 .

s we increase the dimension of the OPs all these maps tend to 

he same signature, the same fingerprint on the map, although 

ome maps show that overlap for smaller dimensionality. Going to 
5 
igher dimensions means that we are exploring longer temporal 

orrelations in the complex dynamics. 

All six iterative maps represented share the same path on the 

P-FIM-PE plane, while four of them (the ones with a period- 

oubling route to chaos) lie right on top of each other. 

Just as for the logistic map, the PDF-Fisher–Shannon plane for 

he other non-invertible maps is much less informative than the 

lane based on ordinal patterns. Except for the values correspond- 

ng to the more periodic dynamics, all non-invertible maps lie in 

 very narrow region on the PDF plane, and do not show any 

ifferentiation as r varies (see Fig. 4 ). The FIM and Shannon en- 

ropy have been computed by dividing the time series into 200 

ins to compute the histograms. The lines present in the plane 

or some of the maps (sine, cusp, cubic, and Ricker’s population) 

orrespond to those parameter values where the maps are peri- 

dic, but they quickly converge to the region of stochastic dynam- 

cs ( P E ≈ 1 , F IM ≈ 0 ). 

We also explored the linear congruential generator, LCG, under 

he OP-FIM-PE plane. This map is known for being highly chaotic 

nd difficult to distinguish from randomness, therefore it is some- 

imes used as a pseudo-random generator. Recently, Olivares et al. 
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Fig. 6. Projection of the logistic map on the OP-FIM-PE plane for dimension D = 4 . Four different sorting protocols are presented. (a) Lehmer. (b) Keller. For (c) we generated 

Gaussian noise and found a sorting protocol that minimized its FIM. (d) corresponds to the sorting protocol that minimizes FIM for the logistic map. 
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30] , via transforming the time series into a network using ordinal 

atterns, could discriminate the linear congruential generator from 

hite noise. 

On our OP-FIM-PE plane this map presents a very clear signa- 

ure for the range 0 ≤ A ≤ 3 . While an uncorrelated stochastic pro- 

ess, such as white noise, would remain in the region where P E ≈
 and F IM ≈ 0 , the linear congruential generator, for this A inter- 

al, covers a wide range of values ( 0 . 1 ≤ P E ≤ 1 ; 0 ≤ F IM ≤ 0 . 95 ),

nd moves in a well definite narrow path (see Fig. 5 ). It overlaps

art of the path covered by the logistic and other non-invertible 

aps, but covers a broader path on the plane, with clear signatures 

f structure in the complex dynamics. Unfortunately, for higher A 

alues, in particular for A = 7141 as used in Ravetti et al. [9] , or for

he whole range 4 ≤ A ≤ 7200 , the projection of the LCG does not 

how distinctive signatures. It collapses in the plane to high en- 

ropy and low FIM. Nevertheless there are some parameter values 

or which the system moves up and to the left. This corresponds 

or numbers that are far from being prime numbers. 

Another distinctive map is the Pinchers map ( x n +1 = 

 tanh [ S(x n − C)] | , with C = 0 . 5 and 0 ≤ S ≤ 4 ). This map,

ven though it is also non-invertible, it does not present the same 

haracteristic signature on the OP-FIM-PE plane as the previously 

tudied maps. It unfolds a seven-shaped path that does not over- 

ap with that of the logistic map, except in a small region of the 

lane (see Fig. 5 (e)). Despite not sharing the same signature, the 

ink it presents at S ≈ 3 on the plane unveils a change in the 

ynamics that is not revealed in the bifurcation map. By exploring 

he time series before and after the kink, we can see that there is 

n actual change in behavior (see Fig. 5 (c,f)). The time series for 

ontrol parameters S < 3 show a more unstructured nature, and 

re noticeable different from those for S > 3 , which present more 

lear features. 

In this study we have used Lehmer sorting protocol, as it is 

ell known and used, and it is easy to generalize to higher di- 

ensions. But we mentioned above that the way we order the or- 

inal patterns has an influence on the value of the computed FIM. 

or dimension D = 3 there are six ordinal patterns and 720 differ- 

nt sorting protocols. This can influence the way each map is por- 
6 
rayed on the OP-FIM-PE plane. We have computed other sorting 

rotocols for the logistic map and found that some orders capture 

lmost no details of the complex structure, while other orders do 

apture it, although with a different signature on the plane each 

see Fig. 6 ). This raises the following questions: Is there an op- 

imum sorting protocol to unveil the complex structure for each 

haotic map? Is there a sorting protocol for a lower dimension that 

xtracts the same detail of structure than other sorting protocols at 

igher dimensions? 

. Conclusions 

We have studied the Fisher–Shannon plane using ordinal pat- 

erns to characterize the complexity of various non-invertible 

aps. We have found that, transforming the time series of the 

ynamics into sequences of ordinal patterns, previous to locating 

he dynamical system on the plane, reveals their complex struc- 

ure, and distinguishes the different regions for the different values 

f the control parameter. This differentiation is not present in the 

isher–Shannon plane when not computed with ordinal patterns, 

ut with the probability distribution function of the time series. In 

his latter case the maps lie on the region of the plane non distin- 

uishable from stochasticity. 

Because the ordinal patterns extract temporal correlations in 

he time series, our results display regions with different tempo- 

al correlations or memory in the systems. The ordinal patterns 

an be calculated with different dimensions, which explores dif- 

erent temporal scales of the system, but for higher dimensions, it 

s required very long time series and high computational resources, 

s the number of possible patterns increases quickly. By studying 

he effect of the dimension of the ordinal patterns we have seen 

hat OPs of low dimension do not extract all the complexity of the 

nderlying dynamics, and higher dimensions are required. But di- 

ensions D ≥ 6 present the same qualitative results, and there is 

o need to consider higher dimensions, with what this implies in 

omputational resources. 

One important result found is that the structure projected in 

he OP-FIM-PE plane produces the same path for most of the non- 
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nvertible maps studied. This reveals similarities of the different 

aps that can also be tracked back to the bifurcation diagrams of 

he maps. This has not to be considered as a universal character as 

inchers map, and linear congruential generator do not show this 

tructure; and cusp map lies in the same region but lacks the more 

omplex structure of the rest of the maps. But this is a signature of 

ommon behavior of the complex dynamics of those non-invertible 

aps. 

Although this technique is not able to distinguish the linear 

ongruential generator for the highly chaotic regime ( A > 3 ) it per-

its to distinguish the linear congruential generator from white 

oise for the small range 0 ≤ A ≤ 3 , for which it depicts a non-

rivial structure in the plane even for values where it presents 

haos. 

Finally, we have shown how this technique allows to detect 

hanges in the dynamics that other techniques do not. In the 

inchers map, the shape of this map on the OP-FIM-PE plane no- 

ices an angle at S ≈ 3 , that has no correlation in the bifurcation

iagram. This change of trend is related to a change in the behav- 

or of the time series. 

It is known that the Fisher Information Measure presents sen- 

itivity to the sorting of the ordinal patterns. We have used the 

ehmer sorting protocol, but these maps present different shapes 

n the plane depending on the sorting criteria. A deep analysis of 

his particular is under way and will be presented elsewhere. Also 

f interest is expanding this study to other families of maps, such 

s conservative or dissipative maps. 
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