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We experimentally investigate a cascade of temperature-compensated unequal-path interferometers that
can be used to measure frequency states in a high-dimensional quantum distribution system. In particular,
we demonstrate that commercially available interferometers have sufficient environmental isolation so that
they maintain an interference visibility greater than 98.5% at a wavelength of 1550 nm over extended
periods with only moderate passive control of the interferometer temperature (<� 0.50 °C). Specifically,
we characterize two interferometers that have matched delays: one with a free spectral range of 2.5 GHz
and the other with 1.25 GHz. We find that the relative path of these interferometers drifts less than 3 nm
over a period of 1 h during which the temperature fluctuates by <� 0.10 °C. When we purposely heat the
interferometers over a temperature range of 20–50 °C, we measure a path-length shift of 26� 9 nm=°C for
the 2.5-GHz interferometer. For the 1.25-GHz interferometer, the path-length shift is nonlinear and is
locally equal to zero at a temperature of 37.1 °C and is 50� 17 nm=°C at 22 °C. With these devices, we
realize a proof-of-concept quantum key distribution experiment and achieve quantum bit error rates of
1.94% and 3.69% in time and frequency basis, respectively, at a quantum channel loss of 14 dB.
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I. INTRODUCTION

Quantum key distribution (QKD) allows two authenti-
cated parties, Alice and Bob, to share a random key that
is secured using the fundamental properties of quantum
mechanics [1]. The field has progressed rapidly in the last
two decades, where most practical QKD protocols encode
information in two-dimensional (qubit) states of a photon,
such as polarization or relative phase. Today, state-of-the-
art QKD systems can generate a finite-length secure key at
a rate of megabits per second [2–4] and at distances over
300 km [5,6], albeit at lower rates.
Despite the significant progress in realistic implementa-

tions, the key generation rates in qubit-based protocols are
constrained by experimental nonidealities, such as the rate
at which the quantum photonic states can be prepared or the
dead time of single-photon-counting detectors. Moreover,
in long-distance QKD, a large fraction of the information-
carrying photons is lost in the quantum channel due to
absorption or scattering. Such physical and practical
limitations inspire new QKD protocols that can outperform
qubit-based protocols in both secure key rate and distance.

A class of protocols that is predicted to provide better
key rates with higher tolerance against errors involves
encoding information in qudit states of photons [7–10]. We
denote the dimension of the Hilbert space describing the
quantum states by d, where d ¼ 2 indicates a qubit and
d > 2 indicates qudits. In high-dimensional schemes,
information is encoded in various degrees of freedom of
the photon, such as polarization, time frequency [11–18],
spatial profiles [19–23], or a combination of these [24].
High-dimensional protocols have two primary advantages
over qubit protocols. First, they allow multiple bits of
information to be encoded on a single photon, hence,
increasing the channel capacity. For some high-
dimensional protocols, high photon efficiency can increase
the secret key rate for high-loss channels, whereas others
can improve the rate when the system is limited by detector
saturation. Second, high-dimensional protocols are more
robust to channel noise [7,8,25] and can tolerate a higher
quantum bit error, thus, achieving secure communication at
longer distances than qubit protocols [10].
We consider a high-dimensional time-bin encoding

protocol where information is encoded in frames of time
bins, and the presence of an eavesdropper is monitored by
transmitting mutually-unbiased-basis (MUB) states with*nti3@duke.edu
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respect to time. For high-dimensional time-bin states, one
choice for a MUB is to use states that are the discrete
Fourier transform of the temporal states within a frame
known as frequency or phase states [11].
The primary challenge of implementing this high-

dimensional protocol is measuring the frequency states.
One proposed method for measuring frequency states is to
use a cascade of d − 1 unequal-path (time-delay) interfer-
ometers [11]. Experimentally, stabilizing the path differ-
ence in the interferometers to subwavelength-distance
scales over long periods of time is challenging due to
environmental disturbances such as temperature, pressure,
and vibration, especially for large path differences. While
active stabilization of the interferometers is possible, it
greatly increases the system complexity.
An alternative approach is to use passively stabilized

interferometers, which have been developed over the last
decade by the optical telecommunication industry for use in
classical phase- and frequency-domain protocols [26,27].
One design principle for addressing the thermal change of
the path length is to adopt athermal design, where materials
with different thermal expansion coefficients are used to
achieve temperature compensation [28–30]. Furthermore,
the sensitivity to pressure is reduced by hermetically
sealing the interferometer, and the vibration sensitivity is
reduced using a compact package.
Recently, other high-dimensional time-frequency QKD

protocols based on continuous [12] or discrete variables [13]
have been proposed using different approaches for measur-
ing the frequency states based on dispersive optics, for
example. The idea of these protocols is to create frequency
states using a dispersive media such as a fiber Bragg grating
that chirps a single-photon wave packet, which is decoded
by Bob using a conjugate-dispersion-fiber Bragg grating
followed by single-photon detectors, sometimes combined
with a delay interferometer. However, matching the
dispersion of the Bragg gratings at the transmitter and
receiver in the presence of environmental disturbances is
also challenging.
The primary purpose of this paper is to characterize the

stability of commercially available, passively stabilized,
unequal-path-length interferometers and assess their fea-
sibility for detecting high-dimensional quantum photonic
frequency states. By using these athermal interferometers,
it is possible to eliminate the need for an active relative
phase stabilization of Alice and Bob’s interferometers often
accomplished by sending strong coherent states between
them [31,32], thus, eliminating possible Trojan-horse
attacks by an eavesdropper [9,33]. In addition, these
interferometers may find application in coherent one-
way and differential-phase-shift QKD protocols [34–36]
or in checking for coherence across many pulses as
required for the round-robin protocols [37–39]. Finally,
our setup can also be used to show a violation of Bell’s
inequality in high-dimensional systems [40,41].

The paper is organized as follows. In Sec. II, we give a
brief description of two- and four-dimensional time-
frequency QKD protocols and discuss how frequency
states can be measured with a cascade of interferometers.
In Sec. III, we discuss the basic design and stability
(Sec. IV) of these interferometers. In Sec. V, we demon-
strate a proof-of-principle QKD experiment, and we sum-
marize our work and discuss potential future applications
in Sec. VI.

II. TIME-FREQUENCY QKD PROTOCOL

We consider the two-basis time-frequency protocol
proposed in Ref. [11], which is based on an entangled
single-photon source, where Alice and Bob share a pair of
hyperentangled photons [42]. For simplicity, the discussion
below is restricted to the equivalent prepare-and-measure
scenario, where Alice prepares and sends single-photon
states and Bob measures the incoming states in one of two
MUBs. In this protocol, time is discretized into bins of
width τ and grouped into frames of d-contiguous time bins.
A temporal state jΨtni is created when the photonic wave
packet is prepared in a single time bin within a frame,
which encodes log2 d bits. For the frequency states jΨfni,
the photonic wave packet has an equal-height peak in every
time bin within the frame, and each wave packet has a
distinct relative phase. Here, the integrated probability over
a frame is held constant for all of the time and frequency
states. Figure 1 illustrates the d ¼ 2 and d ¼ 4 states.

(a) d = 2

(b) d = 4

FIG. 1. Illustration of temporal (left) and frequency (right)
states in terms of the wave-packet temporal positions for
(a) d ¼ 2 and (b) d ¼ 4. The wave-packet peak shapes within
each time bin represent the probability density of the photonic
wave packet. The relative phase of the wave packets for the
frequency states is labeled above each time bin.
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In greater detail, the temporal states can be written as
jΨtni ¼ a†nj0i, where a†n is the field creation operator acting
on a vacuum state in the nth temporal mode. Consequently,
the frequency states can be written as [8]

jΨfni¼
1
ffiffiffi

d
p

X

d−1

m¼0

exp

�

2πinm
d

�

jΨtmi; n¼0;…;d−1; ð1Þ

which is a natural extension of the BB84 temporal qubit
states to higher dimension.
In a typical experimental implementation of a discrete-

variable time-frequency QKD system, an attenuated laser is
used to generate the photonic wave packets with a mean
photon number of the order of 1, and a generalized decoy
state protocol is used to put tight bounds on the fraction of
wave packets that have more than one photon [4,43]. The
temporal states can be generated by on or off encoding of a
continuous-wave laser with a high-contrast intensity modu-
lator. They can be measured directly with a single-photon
detector with a jitter much less than τ and the event
recorded with a high-resolution time tagger. The frequency
states can be generated using a combination of phase and
intensity modulators or with a cascade of delay interfer-
ometers considered here.
One scheme for measuring the frequency states is shown

in Fig. 2(a) for the case d ¼ 2, where we assume that the
wave-packet peaks have a width much less than τ. Here,
the relative phase difference is 0 for jΨf0i or π for jΨf1i.
As is apparent below, an empty “guard” prevents overlap of
wave-packet peaks from neighboring frames when operat-
ing the QKD system at a high rate. A detailed analysis (not
presented here) shows that this overlap does not affect the
quantum bit error rate, and, hence, the guard bins are not

necessarily needed. For clarity, we include the use of the
guard bins in the discussion below.
In a time-delay interferometer, an incoming beam is split

equally by a 50∶50 beam splitter and directed along two
different paths and recombined at a second 50∶50 beam
splitter where the wave packets interfere. The difference in
the path between the two arms of the interferometer is
denoted by ΔL ¼ ΔL0 þ δL, where ΔL0 is the nominal
path difference. Here, δL ≪ ΔL0 is a small path difference
that allows us to make a fine adjustment to the transmission
resonances of the interferometer and is proportional to the
phase ϕ ¼ kδL, where k is the magnitude of the wave
vector of the wave packet.
For d ¼ 2, only a single time-delay interferometer is

required with ΔL ¼ cτ corresponding to a free spectral
range (FSR) c=ΔL, where c is the speed of light, and
ϕ is set to zero. When the state jΨf0i is incident on the
interferometer, the wave packet traveling along the long
path is delayed by τ with respect to the wave packet
traveling along the short arm. After the second beam
splitter, the wave packet originally occupying two time
bins now occupies three (and, hence, explains the need for a
guard bin), where only the wave-packet peak at the center
of each frame interferes constructively (destructively) for
the þ (−) port. The earliest and the latest wave-packet
peaks of the state do not interfere at the second beam
splitter and, hence, do not directly give information about
the frequency state. The situation is reversed when the state
jΨf1i is incident on the interferometer (not shown).
For d ¼ 4, one possible approach for measuring the

frequency states uses a cascade of three time-delay inter-
ferometers as shown in the lower panel of Fig. 2(a). The
first interferometer has a path difference of 2cτ, while the
two interferometers connected to the output ports of

d = 2

d = 4

(a) (b)

d = 4

d = 2

FIG. 2. (a) Schematic
illustration of the
frequency-state meas-
urement technique for
d ¼ 2 (top panels) and
d ¼ 4 (bottom panels).
(b) Frequency-state
waveforms at different
locations in the inter-
ferometers.
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the first interferometer have a path difference of cτ. The
phase of the interferometer connected to the þ (−) port of
the first interferometer is set to ϕ ¼ 0ðπ=2Þ whose outputs
allow us to measure the frequency states jΨf0i and jΨf2i
(jΨf1i and jΨf3i).
The frequency states for d ¼ 4 have four contiguous

time bins occupied by wave-packet peaks of different
relative phases and require three guard bins. When the
state jΨf0i is incident on the first interferometer, as
illustrated in Fig. 2(b), the wave packets are shifted
temporally by 2τ when they arrive at the second beam
splitter, and there is constructive (destructive) interference
for the wave packets in the two middle time bins at the
þ (−) port of the interferometer. The two outer wave
packets do not experience interference. These two sequen-
ces of wave packets are directed to the second set of
interferometers of the next layer in the cascade. For
simplicity, we describe only the interferences that take
place in the interferometer with ϕ ¼ 0 indicated by the
dashed box shown in the lower panel of Fig. 2(a).
At the þ (−) output port of the second interferometer

[lower panel of Fig. 2(b)], all seven time bins are occupied
with the highest (lowest) probability for photon occupation
for the time bin in the middle of the frame, which is due to
constructive (destructive) interference of all four wave-
packet peaks of the incident state. The other occupied time
bins give information about interference of a subset of the
incident wave-packet peaks except for the outermost time
bins where no interference occurs. Thus, it is advantageous
to measure all of the central five time bins because they each
measure different aspects of the coherence of the incident
wave-packet peaks. Because of the possibility of measuring
the coherence among different sets of wave-packet peaks,
the cascade of interferometers might also find use in the
recently developed round-robin QKD protocol [39].
A similar analysis shows that the central time bin of each

of the four outputs from the interferometer cascade are
directly related to each of the frequency states. That is,
constructive interference occurs in output port n when
the state jΨfni is incident on the cascade, and destructive
interference is observed in the other three ports. The
procedure for arbitrary d is given in Ref. [11] for which
2d − 1 guard bins are required.
We note that the interferometric technique is only 1=d

efficient in detecting the frequency states, which means that
when considering the finite-key-length effects, d > 4might
not lead to a higher key rate. However, this intrinsic loss can
be overcome by transmitting a large number of signals,
where the asymptotic secret key length can be approached.
Therefore, the interferometric technique for d > 4 is likely
to give an incremental gain in the ultimate secure key rate
in a QKD system, also coming at the cost of increased
experimental complexity.
In a time-frequency QKD protocol, the contrast (visibil-

ity) of the interference provides an estimate of the error

introduced by an adversary (Eve) in the quantum channel.
The visibility for a frequency state jΨfni is defined as

V ¼ Pþ − P−

Pþ þ P−
; ð2Þ

where Pþ is the probability of detecting the photon in the
expected bright port n in the central time bin, and P− is the
probability of finding the photon in any of the other ports
in the same central time bin. The interference visibility is
limited in a real device by the accuracy of the beam-
splitting ratio, differential loss in the paths, and larger beam
diffraction in one path in comparison to the other. Eve’s
interaction with the quantum states results in a loss of
temporal coherence of the frequency states and, thus,
results in a reduction of V. A security analysis determines
the maximum error rate that can be tolerated and, hence, the
minimum value of V.

III. TIME-DELAY INTERFEROMETERS

The delay-line interferometers used in the experiment
are manufactured by Kylia and are of the Mach-Zehnder
type but use a folded design reminiscent of a Michelson
interferometer with displaced input and output beams
[28,29] to make the design more compact and simpler
(Fig. 3). Here, the incoming beam of light is split into two
unequal paths using a 50∶50 beam splitter, displaced by the
dihedral reflectors, recombined at the same beam splitter,
and directed to two output ports. The overall phase ϕ of the
interferometer is adjusted by changing the optical path of
one arm of the interferometer relative to the other using
a resistive heater placed near one of the reflectors. The
path change is proportional to the power delivered to the
resistor; applying ≤3 V results in a path-length change
of approximately one FSR. Our devices are designed to
operate over the classical optical telecommunication C
band, and we evaluate their performance at 1550 nm near
the middle of the band.

FIG. 3. Illustration of the internal components of a typical
delay-line interferometer [44].
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The stability of these interferometers against environ-
mental changes depends on the thermal compensation
method. While the Kylia design is proprietary, typical
temperature-compensated delay-line interferometers use
materials with a low coefficient of thermal expansion
and an optimized selection of glasses and air paths for
thermal and chromatic compensation [28–30]. The Kylia
devices are realized using ultra-low-expansion optical
glass components and base plate and packaged inside a
hermetically sealed aluminum housing, which stabilizes
them against environmental temperature and pressure,
respectively.

IV. INTERFEROMETER PERFORMANCE

The change in path of the interferometer δL as a function
of temperature T is typically specified by a temperature-
dependent path-length shift (TDPS), but the time scale over
which this characteristic is measured is usually not speci-
fied, and the use of only a single metric assumes that it is
independent of T. As we show here, such a simple metric is
not sufficient to adequately describe the relation between
δL and the change in temperatureΔT. This is due to the fact
that the outer package is made from aluminum, the internal
interferometer is constructed from potentially different
types of glass, and the input and output fibers must pass
through the outer aluminum package. These materials have
vastly different thermal conductivities and heat capacities,
and the detailed design of the thermal link between them is
proprietary. As we describe below, we observe two differ-
ent time scales for the TDPS and that it can be a nonlinear
function of T, indicating that the standard commercial
specification is insufficient.
We investigate the performance of two Kylia delay-

line interferometers, one with a FSR of 1.25 GHz
(ΔL0 ¼ 24 cm, τ ¼ 800 ps) and the other with 2.5 GHz
ðΔL0 ¼ 12 cm, τ ¼ 400 ps). The performance of these
devices is characterized by observing the variation in the
power of light emerging from one of the output ports when
a continuous-wave, single-frequency laser beam is injected
into the interferometer, as shown in Fig. 4(a), for three
situations: (1) long-term (approximately 1 h) stability in a
controlled laboratory environment (temperature control of
�0.1 °C), (2) long-term (approximately 1 h) visibility in the
same laboratory environment, and (3) the TDPS as we vary
T between 20 and 50 °C.
Based on the specification of the interferometers

(TDPS < 50% of the FSR over a 0–70 °C temperature
range), we expect the shift in resonance frequency of the
interferometers to be less than 10 MHz for T < 0.5 °C,
which is typical in a laboratory environment. In order to
measure such a small variation, we use a frequency-
stabilized laser (Wavelength Reference Clarity NLL-
1550-HP locked to a hydrogen cyanide molecular
absorption line and operating in the “line-narrowing”
mode) with an absolute accuracy of ≤ �0.3 pm and a

specified long-term root-mean-square frequency stability
better than 1 MHz.
For all measurements, the interferometers are placed in

a thermally insulated box and allowed to equilibrate for
approximately 2 h with a mean initial temperature of
21.3� 0.3 °C. For the stability and TDPS measurements
at a nominally constant T, the phase of the interferometer is
set at the beginning of the equilibration process to the
steepest slope of the interference fringe (ϕ ¼ π=2), as
shown in Fig. 4(b). If ϕ ≠ π=2 at the end of the equili-
bration process, a small change is made to bring it back to
this point. For the visibility measurement, ϕ is set to zero
to place it at an interference maximum. For the TDPS
measurements over a wider range, T is set between 20 and
50 °C using heating tapes wrapped around the device,
which are connected to a variable voltage supply.

A. Stability at nominally constant temperature

The optical power emerging from the � ports of an ideal
(high-visibility) time-delay interferometer is given by

Pout;� ¼ αP0

2
½1� cosðkΔLÞ�; ð3Þ

where P0 is the power at the input of the interferometer,
and the parameter α ∈ f0; 1g represents the reduced trans-
mission due to insertion loss of the interferometer. We find

Laser 
1550 nm

Photoreceivers ADC 2

Phase 
controller

Temperature
 controller ADC 1

PMF

Insulated box

(a)

(b) 2.5 GHz (c) 1.25 GHz

FIG. 4. (a) Schematic of the setup used to evaluate the
performance of the interferometers. A 200-μW continuous-wave
laser beam is injected into the interferometer using a polarization-
maintaining fiber (PMF). The temperature of the interferometer is
monitored using multiple thermocouples placed at different
locations on the interferometers and digitized using ADC 1
(National Instruments NI-9239). The output powers are recorded
using two photoreceivers (New Focus 2011) and digitized using
ADC 2 (National Instruments NI-9239). The power at the two
outputs of the (b) 2.5-GHz and (c) 1.25-GHz interferometers as a
function of the square of the voltage applied to the resistive
heater.
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that the predominant contribution to the variation in Pout;�
arises from imperfect thermal compensation and hermetic
sealing of the device, giving rise to a change in δL. The
power at the output is given by

2Pout;�
αP0

¼ f1� cos½kðΔL0 þ δLÞ�g

¼ ½1� cosðϕ� kδLÞ�; ð4Þ

¼ ½1 ∓ sinðkδLÞ�; ð5Þ

where we insert the phase ϕ≡ kΔL0 ¼ π=2 between
Eqs. (4) and (5). Equation (5) relates the output power
of the interferometer initially set at ϕ ¼ π=2 to δL assum-
ing a stable laser frequency, and we use it to estimate the
drift of the interferometer.
The emitted power can also change due to other physical

effects, which cause us to incorrectly associate a change δL
with a change in Pout;�. We use various methods to account
for this systematic error in our measurement. To account for
variation in the incident laser power P0 (typically below
0.01%), we place a 50∶50 fiber beam splitter just before
the interferometer with one output defining the reference
laser power PrðtÞ, while the other output is directed to the
interferometer. The ratio between the peak power emitted
by one output of the interferometer and the reference power
is given by α.
For the stability measurements, we find that both the

1.25- and 2.5-GHz interferometers display an apparent
drift of less than 3 nm over 1 h if the temperature of the
environment is stabilized to�0.1 °C as it is in the cardboard
enclosure. Figure 5(a) shows one such measurement of δL
[extracted from the data using Eq. (5)] for the 2.5-GHz
interferometer, with the corresponding change in temper-
ature in Fig. 5(b). We observe that δL is not fully correlated
with ΔT (0.8 correlation coefficient). The lack of stronger
correlation can be attributed to two additional factors that
affect the apparent drift of the interferometer.

First, there is a contribution to the drift of the interfer-
ometer due to laser-frequency fluctuation. We expect the
drift of the frequency-stabilized laser to be better than
1 MHz over 1 h, which corresponds to an apparent path-
length change of 0.62 nm for the 2.5-GHz interferometer
as indicated by the error bars in Figs. 5(a) and 5(c). To
estimate the contribution of laser drift to this data set, we
fit it to a linear function as indicated by the red line. We
attribute the finite slope of the line as arising from the
change in the path of the interferometer, which is
1.2� 0.1 nm. This slope is likely an upper bound to the
actual path-length change given that it is within the range of
the specified laser-frequency drift.
From these data, we also determine the root-mean-square

error (RMSE) between the data and the fit. The measured
RMSE of 0.32 nm corresponds to a possible laser-
frequency variation of 0.51 MHz, well within the specified
deviation of<1 MHz, and, thus, we attribute these smaller-
scale fluctuations in the data to the laser-frequency drift.
Clearly, it is evident that the laser-frequency variation is a
significant contribution to the apparent path-length change
of the interferometer.
A second factor that can give rise to an imperfect

correlation between δL and ΔT is the fact that we measure
T of the aluminum outer package, which may not reflect the
actual temperature of the substrate and optics housed inside
the aluminum package (see discussion below). The effect
of such a lag on these data is difficult to determine from
measurements over such a small temperature change. To
address this issue, we conduct a set of measurements for a
larger temperature range in Sec. IV C below.
To ensure that the laser variation plays a dominant role

in these measurements, in Fig. 6 we show similar plots for
the 1.25-GHz interferometer, but we choose a particular set
of data where the temperature change of the device
(approximately 0.01 °C) is much less than for the 2.5-
GHz interferometer. In Fig. 6(a), we observe that the
interferometer apparently drifts substantially in the first

FIG. 5. (a) The path-length drift of the 2.5-GHz interferometer
measured over 1 h. (b) The corresponding temperature variation
monitored over the same period of time. (c) The path-length
drift from (a) plotted as a function of the temperature variation
from (b).

FIG. 6. (a) The path-length drift of the 1.25-GHz interferometer
for three independent runs measured over 1 h. (b) The corre-
sponding temperature variation monitored over the same period
of time. (c) The path-length drift from (a) plotted as a function of
the temperature variation from (b).
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approximately 20 min of the run and then stabilizes to
within approximately 1.2 nm thereafter. Again, there is
little correlation between δL and ΔT (−0.03 correlation
coefficient). Following a similar procedure that we describe
above, we find that a straight-line fit to the data shown
in Fig. 6(c) has a slope of zero, implying no path-length
change over this temperature range. Furthermore, the
RMSE between the linear fit and the data corresponds
to a path difference of 0.34 nm and can be attributed to a
0.27-MHz drift in the laser frequency, well within the
specification of the laser. We note that the 1-MHz speci-
fication of the laser frequency now translates to a 1.24-nm
change in path length as indicated by the error bars in
Fig. 6(b) and 6(c).
We perform a similar analysis on several independent

data sets collected for both the interferometers and observe
similar stability. Specifically, we observe that δL < 3 nm
over 1 h if the interferometers are stabilized to <0.1 °C.
This measurement is an upper bound to the true path-length
change because the variation of the frequency of the
stabilized laser gives rise to a comparable apparent shift.

B. Visibility

As we discuss in the text related to Eq. (2) above, the
interferometer visibility V is a critical QKD system
parameter used to determine an upper bound on the effects
due to an eavesdropper. Thus, to extract the largest possible
key, it is important to characterize the base-line change in V
due to environmental conditions, which sets a lower limit
on the error due to Eve that can be detected. To this end, we
inject a continuous-wave, frequency-stabilized laser beam
into the interferometer [see Fig. 4(a)], set ϕ ¼ 0, and
monitor the power coming out of the output ports, denoted
by Pmax at theþ output port and Pmin at the − output port.
We then determine V using Eq. (2), where the probabilities
Pþ and P− are replaced with powers Pmax and Pmin. We do
not monitor the laser power in these measurements because
the typical variations in laser power (<0.01%) have less
than a 0.004% effect on V.
Figure 7 shows the temporal behavior of V and ΔT

for both interferometers measured independently at two
different times, each over the course of 1 h. We note that the
temperature changes are slightly larger (<� 0.5 °C) than
for the stability measurement that we discuss in the
previous section. For both interferometers, we find that
the visibilities stay well over 98.5% during the entire hour.
The error bars indicate the expected change in V for a
typical drift in the laser frequency of 1 MHz. This error is
determined by propagating uncertainties and the covariance
of the dependent variables Pmax and Pmin.
One potentially useful application of the delay interfer-

ometers is to perform frequency-state measurements for
a wavelength-division-multiplexed time-frequency QKD
system. To assess the Kylia devices for this application,
we use a widely tunable laser (Agilent HP81862A) to

measure V for both interferometers between 1525 and
1565 nm (approximately over the entire C band) in
approximately 5-nm steps. We find that V > 99% across
this range. This is consistent with Kylia’s specification of
>98.4% over the wavelength range of 1520–1570 nm.
Thus, in a wavelength-multiplexed system, a single set of
interferometers can be used for the frequency measurement
for each wavelength channel, and a wavelength demulti-
plexer can be placed after the interferometers to send each
channel to their respective detectors. Therefore, a high-
data-throughput time-frequency QKD system can be real-
ized without using a separate delay-interferometer cascade
for each spectral channel.

C. Wide-range temperature-dependent
path-length shift

To obtain a better estimate of the TDPS that is not as
sensitive to the laser-frequency fluctuations, we measure
δL over a wider temperature range, where the path-length
shift is expected to be larger. The setup is identical to that
described in Sec. IV above, except that we purposefully
vary the device temperature in large steps. We collect
data at each temperature step for at least 6 h. After this
interval, we heat the device again to a new temperature,
repeating this procedure until the total temperature change
is approximately 30 °C from an initial temperature of
approximately 22 °C.
Figure 8 shows the variation in δL with T for the 2.5-

GHz interferometer over four heating intervals (intervals
indicated by vertical dashed lines). At the beginning of each
interval, we observe that the temperature of the aluminum
housing increases and then levels off. We find that the data
are well described by a single-exponential function with a
rate constant of 1.28� 0.01 h−1 averaged over the four
time intervals [Fig. 8(b)]. The data and the fit are overlaid in
the figure and are indistinguishable (reduced χ2 ¼ 1.34).
From Fig. 8(a), we see that there is a correspondingly rapid
increase in δL, followed by a slower continued rise. We find
that the data are fit well by a double exponential with two

FIG. 7. (a),(c) The visibility of the 2.5- and 1.25-GHz inter-
ferometers measured over 1 h, respectively. (b),(d) The temper-
ature variation of the 2.5- and 1.25-GHz interferometers
measured over 1 h, respectively.

ROBUST AND STABLE DELAY INTERFEROMETERS WITH … PHYS. REV. APPLIED 7, 044010 (2017)

044010-7



different rate constants; the fit function is again overlaid
with the measurements and is nearly indistinguishable
(reduced χ2 ¼ 1.42). The two average rate constants are
1.4� 0.2 and 0.13� 0.02 h−1. The larger rate constant is
similar to that for the rise in T, and we attribute this change
in path due to coupling between the aluminum housing
and the interferometer, likely due to mechanical coupling
between the two. The lower heat conductivity of the
interferometer glass likely contributes to making the other
rate constant so long.
To estimate the total change in δL for each interval,

even though we do not collect data long enough to reach
equilibrium, we use our double-exponential fit to find the
long-time limit for the path change, which we denote by
δL∞, and the single-exponential fit to find T∞. We note that
this fitting technique is only an estimate because it assumes
a change in δL that is linear with temperature after a
sufficiently long settling time. Figure 8(c) shows δL∞ as a
function of T∞, which we fit with a straight line. From this
fit, we find that the TDPS is 26� 9 nm=°C. The TDPS
specified by Kylia is 11 nm=°C, which is clearly smaller
than what we estimate for our device. This could be due to
imperfect temperature compensation for this device.
We observe similar behavior for the 1.25-GHz interfer-

ometer as shown in Fig. 9. Importantly, we observe that the
contribution to δL from the glass can counteract that
due to the aluminum housing for the last three intervals.
Using the same fitting procedure as above, we find that
the average rate constant for the temperature change is
1.297� 0.003 h−1, and the two rate constants for the path

change are 1.57� 0.08 and 0.33� 0.06 h−1. Again, there
is a strong correlation between the temperature rate con-
stant and the fast rate constant for the path change,
indicating that the aluminum housing plays an important
role in our observations. Using our fit to extrapolate to long
times for each interval, we find that the path change is a
nonlinear function of T (well fit by a quadratic in this case),
and, hence, a single value for the TDPS does not adequately
characterize this device. Just considering the data point for
the first interval, the inferred TDPS is 50� 17 nm=°C,
which again exceeds the specification of 22 nm=°C.
However, the TDPS is zero at 37.1 °C based on our fit
to a quadratic.

V. PROOF-OF-CONCEPT QKD EXPERIMENT

To demonstrate the applicability of these interferometers
in a high-dimensional (d ¼ 4) time-frequency QKD pro-
tocol, we implement a proof-of-principle experiment using
the setup as shown in Fig. 10.
We create temporal and frequency states by modulating

the amplitude and phase of a continuous-wave laser.
Specifically, a pulse train of 66-ps-width wave packets is
created from a continuous-wave laser beam using a Mach-
Zehnder modulator and a 5-GHz sine-wave generator. A
second Mach-Zehnder modulator driven with an arbitrary
serial pattern generator produced by a 10-GHz transceiver
located on a field-programmable gate array (FPGA) is used
to select the wave packets within a 1.6-ns-long temporal
frame. The time-bin width is set to 400 ps, matched to the

FIG. 8. Temperature-dependent path-length shift for the 2.5-
GHz interferometer. (a) Variation in the path change as the
interferometer is heated in four intervals. The rate constants for
the double-exponential fit for intervals 1–4 are (1.4� 0.1,
0.10�0.04), (1.3� 0.1, 0.10� 0.02), (1.3� 0.1, 0.23� 0.04),
and ð1.6� 0.6; 0.07� 0.06Þ h−1, respectively, and the long-time
extrapolated path changes δL∞ are 253� 80, 135� 3, 101� 19,
and 280� 170 nm, respectively. (b) Variation in the temperature
as the interferometer is heated. The rate constants for the
exponential fit for intervals 1–4 are 1.223� 0.007, 1.370 �
0.007, 1.48� 0.02, and 1.047� 0.005 h−1, respectively, and the
extrapolated temperatures are 32.35� 0.03, 36.1� 0.2,
41.6� 0.1, and 50.78� 0.03 °C, respectively. (c) Temperature
dependence of the long-time extrapolated path change along with
a fit to a straight line.

FIG. 9. Temperature-dependent path-length shift for the 1.25-
GHz interferometer. (a) Variation in the path change as the
interferometer is heated in four intervals. The rate constants for
the double-exponential fit for intervals 1–4 are (1.4� 0.2,
0.2� 0.1), (1.2� 0.2, 0.6� 0.2), (1.9� 0.1, 0.28� 0.04), and
ð1.8� 0.1; 0.24� 0.02Þ h−1, respectively, and the long-time
extrapolated path changes δL∞ are 244� 80, 114� 3,
−50� 10, and −198� 12 nm, respectively. (b) Variation in
the temperature as the interferometer is heated. The rate constants
for the exponential fit for intervals 1–4 are 1.101� 0.002,
1.330� 0.001, 1.277� 0.003, and 1.48� 0.01 h−1, respectively
and the extrapolated temperatures are 27.89� 0.01, 34.69 �
0.01, 43.90� 0.08, 50.94� 0.04 °C, respectively. (c) Temper-
ature dependence of the long-time extrapolated path change along
with a fit to a quadratic function.
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time delay τ of the second-stage interferometers (2.5-GHz
FSR) in the interferometric setup. The FPGA is pro-
grammed to transmit a fixed pattern with 90% temporal
and 10% frequency states at a repetition rate of 625 MHz.
To have an equal probability of observing photons in
either a temporal or a frequency state, we use a third
intensity modulator, also driven by the FPGA, to lower the
transmission during a frequency-state frame by a factor of
4. Three additional signals from the FPGA are combined to
drive a phase modulator, which induces the appropriate
phase for each peak making up the frequency state. The
light is then attenuated using a variable optical attenuator
to a mean photon number of approximately 0.5 photons per
state. The single-photon wave packets are transmitted
through a second variable optical attenuator to simulate
losses in the quantum channel. For this measurement,
we fix the attenuation in the quantum channel to 14 dB,
equivalent to a standard fiber length of 70 km (0.2 dB=km).
The average observed detection rate at this loss is
5.88 × 106.
When the single photons arrive at Bob’s receiver, the

wave packets are split using a beam splitter that directs 90%
(10%) of the signal to the temporal (frequency) measure-
ment devices. The incoming single photons in the temporal
channel are measured using five identical high-efficiency
(>70%), low-jitter (50 ps), fast-switching (>15-MHz
detection rates) superconducting nanowire detectors with
identical readout circuits. The frequency-basis measure-
ment is performed using three delay interferometers in a
tree structure, two with a FSR of 2.5 GHz and the other
with a FSR of 1.25 GHz, and four single-photon detectors.
For both temporal and frequency measurements, the
detector outputs are time tagged using a 50-ps-resolution
time-to-digital converter.
The performance of the QKD system is characterized by

several key parameters, such as the error rates, the quality of
the state preparation and detection, etc., all of which affect

the secret key rate of an eventual full QKD system. Below,
we present some key parameters of our prototype system.

A. MUB quality

We characterize the quality of the MUB states by
calculating the overlap of the temporal- and frequency-basis
states, jhΨfn jΨtmij2, fm;ng∈f0;1;2;3g. Specifically, we
calculate the probability of detections when an input state is
measured in both the basis in which it is created as well as in
the other basis. Ideally, if an input state is measured in the
basis in which it is created, the overlap is 1. Similarly, a state
prepared in one basis and measured in an orthogonal basis
has an equal probability of detection across all orthogonal
modes. That is, states prepared and measured in orthogonal
bases result in a uniformly random outcome, jhΨfn jΨtmij2 ¼
0.25. This is illustrated in Fig. 11(a) where we assume that
the state preparation and detection are perfect. The colored
axis represents the probability of detections. The blocks
along the diagonal represent the cases where an input
state is measured in the same basis it is created, which
results in an overlap of 1.
In Fig. 11(b), we plot the experimentally achieved

overlap for all input states. The diagonal elements indicate
a strong correlation between the prepared and measured
states when the measured state coincides with the prepared
state. The off-diagonal elements, especially when the states
are prepared and measured in different bases, are very
close to the ideal value of 0.25 as illustrated in Fig. 11(c),
where we provide the values of the experimentally obtained
matrix elements. When the frequency (temporal) states are
measured in the temporal (frequency) basis, we calculate
the standard deviation of the overlap to be 0.02 (0.006).
Although the average overlap of our MUB states is close to
ideal, a few of the matrix elements indicate that some of the
states are not prepared or measured perfectly and will lead
to quantum bit errors in our QKD system.

FIG. 10. Schematic illustrating the experimental details for the proof-of-principle demonstration. A 1550-nm continuous-wave laser
(Agilent HP81862A, power 1 mW) is modulated into a pulse train of 66-ps-width wave packets using a Mach-Zehnder modulator
(EOSPACE). The optical modulator driver (JDSU H301) used as an amplifier at the input of the modulator is driven with a 5-GHz sine-
wave generator. The field-programmable gate array (Stratix V FPGA 5SGXEA7N2F40C2N, Terasic Stratix V Signal Integrity Kit) is
used to create the temporal and frequency states with biased probabilities of 0.9 and 0.1, respectively. The frequency states are
suppressed using a third Mach-Zehnder modulator to reduce the amplitude to one-fourth. A phase modulator is used to impose phases on
the frequency states. At Bob’s receiver, the incoming quantum states are directed to temporal- and frequency-basis-measurement devices
using a 90∶10 coupler. The output of the detectors are time tagged using a time-to-digital converter (Agilent U1051A Acquiris).
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B. Error rates and visibility

Quantum bit error rates are important system parameters,
which, combined with the rate of state preparation and
detection, determine the secret key generation rate. The
error rates in both bases are affected by several factors, such
as the system temporal jitter, leakage of light through the
intensity modulator, detector noise, uncorrelated photons
entering the quantum channel, optical misalignment, etc. In
addition to these factors, the error rate in the frequency
basis is also affected by the quality of state preparation and
visibility of the interferometers.
In our experiment, the quantum bit error rates in the time

and frequency bases are measured to be 1.94% and 3.69%,
respectively. We note that the observed error rates here are
different than in Fig. 11(c) because these two data sets were
taken at two different times. In Fig. 12(a), we show timing
histograms when each of the four temporal states is
detected in the timing basis. The FWHM of the histograms
is approximately 110 ps, much smaller than the 400-ps
time-bin window, which indicates that the system jitter is
not the primary source of error in our measurement. In fact,
the main source of error in our QKD system is the leakage
of light from the intensity modulator; we estimate that
approximately 1% error can be attributed to the finite
extinction ratio of the intensity modulators.
Figure 12(b) shows the histograms obtained when the

frequency state jΨf0i passes through the interferometric
setup and the photons are detected in detectorsD0,D2,D1,
D3 (top to bottom panels). The observed constructive
(destructive) interference pattern is similar to the expected
intensity pattern as shown in Fig. 2. In Fig. 13, we plot the
visibility of all four frequency states as a function of time
during which the data are collected. The visibility is

determined using Eq. (2), where we subtract 1.94% of
the events to correct for the affect of leakage, detector
noise, etc., and to estimate the visibility solely due to the
state preparation and measurement.
From Fig. 13, we observe that the visibility of the

frequency state jΨf0i is >98% during the course of the
data collection, similar to what we observe with classical
light. On the other hand, the visibilities of jΨf1i, jΨf2i, and
jΨf3i are smaller. We attribute the lower visibility of these
states to imperfect state preparation.
In greater detail, the frequency states in our experiment

are created by combining three amplified signals from the
FPGA using a 3∶1 coupler and using this signal to drive the
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FIG. 11. (a) Probabilities of detecting a state when the state
preparation and measurement device is assumed to be perfect.
(b) Experimentally achieved probabilities of detection. (c) Over-
lap matrix elements for all input states is determined using
4.96 × 106 total events in the time and frequency bases.

FIG. 12. (a) The timing histograms of temporal state jΨt0i,jΨt1i, jΨt2i, and jΨt3i as measured during the experiment. (b) The
timing histogram of frequency state jΨf0i measured at the output
of the interferometric setup.

FIG. 13. Visibilities of all frequency states as a function of time.
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phase modulator. There are two specific problems with
this technique. First, the gain of each amplifier is slightly
different and can cause deviation in phase from one time
bin to another. Second, the timing of the combined signal
needs to be matched to within tens of picoseconds, which is
difficult given each path from the FPGA to the phase
modulator is different. This nonideality can be corrected in
future experiments using finely tunable digital delay lines
and precision step attenuators.

VI. CONCLUSION

In conclusion, we demonstrate high environmental sta-
bility for commercially available temperature-compensated
time-delay interferometers for application in discrete-
variable time-frequency QKD. In particular, we observe
that both the 2.5- and 1.25-GHz interferometers have a path-
length stability of better than 3 nm when the temperature is
maintained within �0.1 °C in a laboratory environment. In
addition, when heated in a controlled manner, we observe a
TDPS of 26� 9 nm=°C for the 2.5-GHz device. For the
1.25-GHz interferometer, we observe a nonlinear change in
path length as a function of the temperature, which is locally
at zero at 37.1 °C and 50� 17 nm=°C at 22 °C. We argue
that for such nonlinear devices, the TDPS metric is not
sufficient. Rather, we have to assess both the stability at a
constant temperature over a long time scale, as well as over a
wide range of temperatures. We also investigate the pos-
sibility of using these passive interferometers as components
in time-bin encoding QKD. We observe a maximum change
of visibility of less than 1.0% over 1 h, which shows that if
the temperature of these devices is maintained actively
within �0.1 °C, then they can indeed be used for long-
distance high-dimensional time-bin encoding QKD. We also
demonstrate a proof-of-principle QKD experiment and
achieve a quantum bit error rate of 1.94% (3.69%) in
temporal (frequency) basis at a quantum channel loss of
14 dB. We conclude that these devices are suitable for
realizing a high-dimension discrete-variable time-frequency
QKD system.
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