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Abstract: Optical excitable devices that mimic neuronal behavior can be
building-blocks of novel, brain-inspired information processing systems. A
relevant issue is to understand how such systems represent, via correlated
spikes, the information of a weak external input. Semiconductor lasers with
optical feedback operating in the low frequency fluctuations regime have
been shown to display optical spikes with intrinsic temporal correlations
similar to those of biological neurons. Here we investigate how the spiking
laser output represents a weak periodic input that is implemented via
direct modulation of the laser pump current. We focus on understanding
the influence of the modulation frequency. Experimental sequences of
inter-spike-intervals (ISIs) are recorded and analyzed by using the ordinal
symbolic methodology that identifies and characterizes serial correlations
in datasets. The change in the statistics of the various symbols with the
modulation frequency is empirically shown to be related to specific changes
in the ISI distribution, which arise due to different phase-locking regimes.
A good qualitative agreement is also found between simulations of the Lang
and Kobayashi model and observations. This methodology is an efficient
way to detect subtle changes in noisy correlated ISI sequences and may be
applied to investigate other optical excitable devices.
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1. Introduction

Excitable behavior is observed in many nonlinear, natural systems [1]. Such excitable systems
respond to external perturbations in an all-or-none manner. For perturbations below the ex-
citable threshold the response is of small amplitude and linear, unable to drive the system far
away from its rest state. For perturbations above the threshold the response is nonlinear and cor-
responds to a large excursion of the system’s variables in phase space, manifested by a spike.
Because information processing in the brain is associated with the excitable action potentials
that propagate through neuronal axons [2], many efforts are being done to develop excitable
devices that could mimic neuronal behavior in bio-inspired information processing networks.
Particularly, semiconductor lasers with optical injection [3–5], optical feedback [6, 7] or satu-
rated absorber [8–11] have been investigated with this purpose.

A relevant issue is to understand how such neuron-like optical systems represent, in the
sequence of spikes, an external input signal. When an excitable system is periodically forced
with a stimulus above the threshold it can respond periodically, with a period that is related
to the forcing period, a behavior that is called entrainment, or phase locking, in analogy with
the behavior observed in periodically forced oscillators [12]. Phase locking behavior is referred
to as n : m, with n spikes for m forcing cycles. When the stimulus is below the threshold,
intrinsic noise leads to stochastic entrainment [13,14] and complex spike patterns which contain
information about the subthreshold input.

An excitable optical system that allows to study entrainment phenomena is a semiconductor
laser with optical feedback operating in the low-frequency fluctuations (LFF) regime. In the
LFF regime the laser intensity drops out irregularly (see Fig.1), in an apparently random man-
ner, each dropout (the laser “spike”) being followed by a gradual, step-like recovery [15–23].
To study entrainment, external forcing can be implemented via a direct modulation of the laser
pump current [24–27].

The inter-spike-intervals (ISIs) are strongly affected by the current modulation, as the spikes
tend to occur in the same phase in the modulation cycle and the ISIs become integer multiples
of the modulation period, Tmod . For increasing modulation amplitude and fixed modulation
frequency fmod , if fmod is high enough, the ISIs become progressively smaller multiples of Tmod

and if the modulation is strong enough, there is a spike for each drive cycle (1 : 1 locking) [28,
29]. While the role of the forcing amplitude in the statistical distribution of ISIs has been studied
in detail by several groups [14, 27–31], less is known about the influence of the modulation
frequency and the role of weak forcing in the ISI sequence (i.e., in the timing of the spikes).
Taking into account that neuronal systems encode information in correlated spike sequences
[32, 33], it is crucial to understand how optical spike encoding works and how simple signals,
such as a weak periodic modulation, can be encoded in a sequence of optical spikes.

Recently we studied experimental and simulated ISI sequences [6, 7] employing a symbolic
method of time-series analysis referred to as ordinal analysis [34]. This methodology is capa-
ble of identifying the presence of serial correlations in datasets, and by analyzing the statistics
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of the different symbols (ordinal patterns, OPs), it can capture subtle variations in temporally
correlated data [35–38]. We unveiled serial correlations between consecutive spikes both, in
the unforced laser (without modulation) and in the forced laser (with current modulation). We
identified a minimal model that reproduces the correlations in both cases, and this model is
known to describe temporal correlations in spike sequences of sensory neurons [39]. Thus, our
findings suggest that semiconductor lasers with optical feedback and current modulation, oper-
ating with suitable parameters, can be building-blocks to develop optical neurons that emulate
the spike activity of biological neurons.

In [6, 7] we analyzed the role of external forcing on the sequence of optical spikes by grad-
ually increasing the modulation amplitude at a fixed modulation frequency. Here we address
the role of the modulation frequency. We aim to understand how weak periodic signals with
different frequencies are encoded in spike sequences. In spite of the fact that modulated LFFs
have been extensively investigated, to the best of our knowledge, no study has addressed the
influence of the weak modulation over a wide frequency range. Modulation frequencies close to
the average LFF frequency were studied in [29,30], and encompassing the free spectral range of
the external cavity in [27], in a regime of operation such that LFF spikes did not occur without
modulation.

Here we study the laser spiking output when varying the modulation frequency and demon-
strate significant changes in the statistics of the symbolic ordinal patterns. These changes are
accompanied by clear modifications in the shape and peak of the ISI distribution, which reveals
noisy phase-locking. Thus, we show that we can track subtle changes in the correlated spiking
laser output, due to stochastic entrainment, by means of the OPs’ statistics. This method for
detecting noisy phase-locking can be useful to investigate temporal correlations and entrain-
ment in other neuron-like optical systems. In addition, we show that for appropriate parameters
simulations of the Lang and Kobayashi model [40] are in good qualitative agreement with the
experimental results.

2. Experimental setup

The experimental setup used is as in Fig. 1a in [7]. A semiconductor laser (Sony SLD1137VS),
with a solitary threshold current Ith =28.4 mA, temperature- and current-stabilized with an
accuracy of 0.01 C and 0.01 mA, respectively, using a combi controller (Thorlabs ITC501),
emitting at 650 nm, has part of its output power fed back to the laser cavity by a mirror 70
cm apart (the external cavity round-trip time is 4.7 ns). A 50/50 beamsplitter in the external
cavity sends light to the detection branch consisting of a photo-detector (Thorlabs DET210)
connected to an amplifier (FEMTO HSA-Y-2-40) and a 1 GHz digital storage oscilloscope
(Agilent Technologies Infiniium DSO9104A). A neutral density filter in the external cavity
allows to control the feedback power. The DC pump current is IDC =29.10 mA, the laser is
operated at 19.00 C and a threshold reduction due to feedback of 7% is observed.

Through a bias-tee in the laser mount, the pump current is modulated with a sinusoidal signal
provided by a waveform generator (Agilent 33250A), with frequency varying from 1 to 50 MHz
in steps of 1 MHz, and a peak-to-peak amplitude varying from 0.8% to 2% of IDC, in steps of
0.4%. For these modulation amplitudes the laser current is always above the solitary threshold.
The experiment is controlled by a LabVIEW program that acquires the time series, detects
the spikes, and calculates the inter-spike-intervals (ISIs) until 40,000 ISIs are recorded. Then,
the program changes the modulation frequency and/or amplitude, waits a few seconds to let
transients die away, and the process is repeated.
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3. Lang and Kobayashi model

The Lang and Kobayashi rate equations [40], in adimensional form, for the slowly varying
complex electric field E and the carrier density N are

dE
dt

=
1

2τp
(1+ iα)(G−1)E +ηE(t − τ)e−iω0τ +

√
2βspξ , (1)

dN
dt

=
1

τN
(μ −N −G|E|2), (2)

where α is the linewidth enhacement factor, τp and τN are the photon and carrier lifetimes
respectively, G = N/(1+ ε|E|2) is the optical gain (with ε a saturation coefficient), μ is the
pump current parameter, η is the feedback coupling coefficient, τ is the feedback delay time,
ω0τ is the feedback phase, βsp is the noise strength, representing spontaneous emission, and ξ
is a Gaussian distribution with zero mean and unit variance. The current modulation is simu-
lated as μ = μ0 +asin(2π fmodt), where a is the modulation amplitude, fmod is the modulation
frequency and μ0 is the DC current.

Extensive simulations of the Lang and Kobayashi model were performed. While a detailed
analysis is out of the scope of this work, we report in Section 6 a reasonable good qualitative
agreement with the experiments for the following model parameters: μ0 = 1.01, a = 0.004
(corresponding to a peak-to-peak amplitude of 0.8% of μ0), ε = 0.01, τp = 0.00167 ns, τN = 1
ns, βsp = 5×10−5 ns−1, η = 10 ns−1, and α = 4. For each modulation frequency we simulated
2 ms and averaged the intensity time series over a sliding window of 1 ns to reproduce the
bandwidth of the detection system. The averaged series contained between 22800 and 35000
dropouts for low and high frequency, respectively.

4. Ordinal symbolic analysis

We analyze the experimental and numerical ISI sequences by using ordinal analysis [34], as
in [6, 7]. Each ISI sequence, {ΔTi}, is transformed into a sequence of ordinal patterns (OPs),
which are defined by considering the relative length of D consecutive ISIs and assigning them
a symbol that indicates their relative length, in the same order as they appear in the sequence.
The shortest interval is assigned 0 and the longest interval is assigned D−1. For D = 2 the only
two possibilities are: ΔTi > ΔTi+1 that gives the ‘10’ OP, and ΔTi < ΔTi+1 that gives the ‘01’
OP. For D = 3 there are six possibilities: ΔTi < ΔTi+1 < ΔTi+2 gives ‘012’, ΔTi+1 < ΔTi < ΔTi+2

gives ‘102’, and so on. The OP probabilities are then calculated by counting their frequency of
occurrence in the sequence.

Additionally, we compute the transition probabilities (TPs) from an OP to another OP [7].
The TPs are normalized such that all possible transitions from one OP sum one. To fix the ideas,
for D = 2 OPs, TP01→01+TP01→10 = 1 and TP10→01+TP10→10 = 1.

The symbolic transformation employed here has the drawback that it disregards the informa-
tion about the precise duration of the ISIs, but it has the advantage that it keeps the information
about temporal correlations among them, i.e., about correlations in the timing of the optical
spikes. Specifically, in the next section we analyze correlations among 3 spikes (by using D = 2
OPs), 4 spikes (by using D = 3 OPs) and 5 spikes (by using D = 2 TPs). As the number of pos-
sible OPs increases as D!, the TP method has the advantage of allowing to infer the presence
of correlations among 5 consecutive spikes by computing only 2 TPs (TP01→01 and TP10→10)
instead of computing the probabilities of 4! = 24 OPs.
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5. Experimental results

Figure 1 displays the measured intensity time series and the ISIs distribution for six values of
the modulation frequency, fmod , when the modulation amplitude is 1.2% of IDC. For each fre-
quency 30 modulation cycles are shown. The ISI distribution is computed with bins centered
at integer multiples of Tmod (with the exception of the first bin, centered in 0). The modulation
frequencies displayed are chosen to highlight different behaviors: either n : 1 locking predom-
inates (revealed by a high peak in the ISI distribution at nTmod), or there is a transition from
n : 1 to n+1 : 1 locking, revealed by the peaks at nTmod and (n+1)Tmod having nearly the same
heights.

For fmod = 7 MHz (first row) the ISI distribution peaks at Tmod . The time series reveals that
the ISIs are in fact heterogeneous, as in this case the bin centered in Tmod is about 143 ns wide.
As the modulation frequency increases, the peak in the ISI distribution shifts to higher multi-
ples of Tmod and the ISIs become more homogeneous. At 26 MHz (third row) phase locking
2:1 occurs with 3:1 intermittency. In the time series one can notice that, after a dropout occurs
in a modulation cycle, the next cycle takes place during the intensity recovery time, and the
consecutive spike is separated in time by 2Tmod . Similar observation holds for higher frequen-
cies, now other modulation cycles being clearly visible in the intensity oscillations between
consecutive spikes. For 39 MHz (fifth row) the 3:1 pattern is dominant and for 49 MHz (sixth
row) we can see intermittent switching between 3:1 and 4:1. As the frequency increases and the
modulation becomes faster, the ISIs become larger multiples of Tmod as the dropouts are spaced
by an increasing number of cycles.
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Fig. 1. Experimental time series of LFF intensity spikes (left column) and the corresponding
inter-spike-interval (ISI) distribution (right column). The modulation amplitude is 1.2% of
IDC and the modulation frequency is 7 MHz (a-b); 14 MHz (c-d); 26 MHz (e-f); 31 MHz
(g-h); 39 MHz (i-j); 49 MHz (k-l). In the left panels only 30 modulation cycles are shown,
but the ISI distributions in the right panels are computed from 40000 ISIs.
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Figure 2 displays the variation of the mean ISI, < ΔT >, with the forcing frequency. In
panel 2a we plot < ΔT > as a function of fmod for four modulation amplitudes (indicated
as percentages of IDC). A decreasing trend can be observed, interrupted by “plateaus” where
< ΔT > oscillates (at about 30 MHz) and remains nearly constant (at about 45 MHz) for the
two lower amplitudes, or continues to decrease for the higher amplitudes.

The origin of this behavior can be identified in Fig. 2(b), where the ratio < ΔT > /Tmod

is plotted vs. the modulation frequency. After an almost linear increase for low modulation
frequencies (where < ΔT > varies very little compared to Tmod), two plateaus occur at < ΔT >
/Tmod ∼ 2 and < ΔT > /Tmod ∼ 3. For strong modulation amplitude the shape of the plateaus
become more clear, while for weak modulation, only signatures of the plateaus are evident.
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Fig. 2. (a) Mean ISI as a function of the modulation frequency for several modulation
amplitudes. (b) Ratio between the mean ISI and the modulation period, < ΔT > /Tmod ,
versus modulation frequency for several modulation amplitudes.

To investigate if the changes in the ISI distribution induced by the variation of the modulation
frequency occur smoothly or rather abruptly, the probabilities of the first 5 bins [i.e., pn with
n = 0 . . .4, pn being the probability of an ISI interval being in the bin (nTmod −Tmod/2,nTmod +
Tmod/2)] are plotted vs. fmod . Figure 3 displays the results for the same modulation amplitude as
in Fig. 1 (1.2%). A smooth variation of the probabilities is observed over the entire frequency
range. For clarity we indicate with vertical arrows the six frequencies corresponding to the
panels in Fig. 1. It can be observed that p1 displays a maximum (close to 1) at 7 MHz, p2, at
26 MHz and p3, at 39 MHz, while p1 ∼ p2 at 14 MHz, p2 ∼ p3 at 31 MHz and p3 ∼ p4 at 49
MHz.

Figure 4 displays the results of ordinal analysis applied to the ISI sequences, for the same
modulation amplitude. We present results for D = 2 and D = 3. For D = 2 [Fig. 4(a)] we plot
simultaneously three probabilities: the probability of one OP [‘01’, as the probability of ‘10’ is
1-P(‘01’)] and the probabilities of two transitions (from one OP to the same OP, as the other two
TPs can also be readily calculated from the normalization conditions: TP01→01+TP01→10 = 1
and TP10→01+TP10→10 = 1). For D = 3 [Fig. 4(b)] we plot simultaneously the probabilities of
the 6 OPs.

We can see smooth changes in these probabilities as the modulation frequency varies. The
same type of smooth variation that was observed in the pn probabilities (Fig. 3), is seen here,
more clear in the TP01→01 and in the OP ‘210’ probability (red curves). These probabilities are
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Tmod/2. n values in the legend. The first five probabilities are shown, for the same modula-
tion amplitude as Fig. 1 (1.2%).

the ones that depart more from equiprobability and are anti-correlated.
To demonstrate that these changes are indeed significant, Figs. 4(c,d) display the same prob-

abilities, but calculated after the ISIs series have been shuffled (surrogate data). We can see that
in these panels all the OPs and TPs are practically equiprobable, as expected, as no correlations
exist in the surrogate data.

Comparing Fig. 3 with Figs. 4(a),(b) we see that at 7 MHz (when p1 is maximum) and at
14 MHz (when p1 ∼ p2) nothing remarkable occurs in the symbols’ statistics; however, for
higher modulation frequencies, changes in the ISI distributions manifest also in changes in
the statistics of the OP probabilities and transitions between OPs: the maximum of p2 and p3

(occurring at 26 MHz and at 39 MHz respectively) are located just after the local maxima
(minima) of the TP01→01 (OP ‘210’ probability), and the “equilibrium” situations (p2 ∼ p3 at
31 MHz and p3 ∼ p4 and 49 MHz) occur just after the local minima (maxima) of TP01→01 (OP
‘210’ probability).

To demonstrate that the above observations are robust, in Fig. 5 we plot the probabilities
p0 . . . p4, as well as the OPs and TPs, for D = 2, for weaker and for stronger modulation am-
plitudes. For the different amplitudes, above 20 MHz, the maxima and minima of the TP01→01

curve precede the maxima and the “equilibria” of the pn probabilities. For strong amplitude we
can see that, as p4 (pink curve) vanishes (and therefore the “equilibrium point” between p3 and
p4 also disappears), the local maximum and minimum in the transition probability curve also
disappear. One remarkable feature is the structure that appears in the TPs in the low frequen-
cies (< 5 MHz) with the increasing amplitude. This structure does not appear to be linked with
changes in the ISI distribution, at least for the wide bins (centered at nTmod) used in this analy-
sis. To check this hypothesis we used narrower bins and plotted all probability density functions
for lower frequencies for all amplitudes but up to now the origin of this structure is unclear. We
speculate that it could be related to 1 : m phase-locking (m spikes per modulation cycle). A
detailed investigation of the behavior is ongoing and the results will be reported elsewhere.

In the experiment we also used different external cavity lengths corresponding to feedback
delays of 2.5, 7.5 and 10 ns. Qualitative similar behavior was observed, with similar structures
also appearing in the lower frequencies for delays of 2.5 ns and 7.5 ns.
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Fig. 4. (a) Probabilities of D = 2 ordinal patterns and the transition probabilities. (b) D = 3
OPs probabilities. (c), (d) Same as (a),(b) but when the OPs and TPs are computed from
surrogate (shuffled) IDI sequences.
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1.6% (e,g); 2.0% (f,h). Legends as in Figs. 3 and 4(a).
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6. Comparison with Lang and Kobayashi simulations

Figure 6 shows a comparison between experimental and numerical OP and transition probabil-
ities for the lower experimental modulation amplitude. The modulation amplitude is 0.8% of
the DC current for the experimental data, panels 6(a) and 6(c). In the simulations, panels 6(b)
and 6(d), the modulation amplitude parameter is a = 0.004, corresponding to a peak-to-peak
amplitude of 0.8% of μ0, the DC current parameter. For the numerical data the probabilities
change slower with the varying frequency than in the experimental data, but present the same
general trends. As the model is a quite simple one (it takes into account only one reflection in
the external cavity and neglects multi-mode emission, spatial and thermal effects) only a quali-
tative agreement could be expected. We find it remarkable that no re-scaling or major changes
in the parameters of the model are needed to reproduce the general behavior of the probabil-
ities. The agreement is not good for stronger modulation amplitude. More detailed numerical
investigations are ongoing and should be reported elsewhere.

It is important to note that for D = 3 OPs, two clusters of OPs, formed by ‘021-102’ and
‘120-201’, where the OPs occur with the same probability, appear in the entire frequency range
both for experimental and numerical data, being more clearly visible for higher frequencies.
These clusters were reported in [6, 7] and were explained in terms of a simple model that was
previously used to model temporal correlations in sensory neurons. Thus, we demonstrate here
that the two clusters are robust and persist over a wide range of modulation frequencies.
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Fig. 6. First row: OP and transition probabilities for D = 2. (a) Experimental, (b) Numeri-
cal. Second row: OP probabilities for D = 3. (c) Experimental, (d) Numerical. Modulation
amplitude: 0.8% of IDC. Legends as in Fig. 4.

7. Conclusions

We have experimentally investigated the spiking output of a semiconductor laser with optical
feedback in the LFF regime, under weak current modulation. In this regime the laser behaves
as a weakly forced excitable system. We focused on the effects of varying the modulation fre-
quency in the sequence of inter-spike-intervals (ISIs). With increasing modulation frequency
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the ISIs become larger multiples of the modulation period. We found that the mean ISI does
not decrease monotonically as the modulation frequency increases, but displays smooth oscil-
lations and plateau-like behavior due to noisy phase-locking. By using a symbolic method of
analysis capable of detecting temporal correlations in datasets, we identified subtle changes
in the correlations present in the ISI sequence (revealed by variations in the probabilities of
the ordinal patterns and transitions), that complement the information extracted from the ISI
distribution. The smooth variations in the symbolic probabilities were shown to be related to
changes seen in the ISI distribution. For increasing modulation amplitude we observed that the
phase-locking regions migrate to higher frequencies, became wider and the locking became
more clear. We have also shown that, for appropriated parameters, simulations of the Lang and
Kobayashi model are in good qualitative agreement with the experimental results.

The symbolic methodology used is an efficient way to detect subtle changes in noisy cor-
related datasets and may be applied to investigate other optical excitable devices. A detailed
comparison with model predictions, as well as an investigation of 1 : m phase locking behavior
at very low frequencies is in progress and will be reported elsewhere.
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