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The Growth of Cosmological Perturbations in the
Transition Eras
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In this article we determine the dominating modes of the cosmologi-
cal perturbations in different transition eras of the universe evolution
(namely, radiation-dust, dust-vacuum, dust-K-matter, and K-matter-
vacuum) in a covariant and gauge-invariant manner.
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1. INTRODUCTION

According to the conventional picture the formation of cosmic structures
can be traced to the existence of small initial inhomogeneities in the early
Universe which, whatever their origin was, grew with time. As the Uni-
verse expanded these inhomogeneit ies necessarily felt this effect, as it tends
to dilute them and consequently to homogenize the Universe. So, any inho-
mogeneity that we may observe today has necessarily survived the cosmic
expansion thanks to the natural tendency of matter (and radiation) to
clump by gravitational attraction. Therefore the perturbations will either
grow or decay depending on the type of matter considered in conjunction
with the specific expansion law. Since the pioneering work of Lifshitz [1]
much attention has been paid to the evolution of small inhomogeneities in
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the radiation-dominated era as well as in the matter-dominated one (see
for instance Refs 2-4). By contrast, the transition era from radiation to
dust, in which none of these components dominated the expansion, has
received comparatively little attention (see, however, Ref. 5). The tar-
get of this paper is to study the evolution of small inhomogeneities in an
almost Friedmann—Lemaltre—-Robertson-Walker (FLRw) universe with flat
space sections in different transition eras, firstly, in the one just mentioned,
secondly, in the transition era from dust to a vacuum-dominated universe
(i.e. a universe in which a small cosmological constant, A > 0, is assumed
to exist), thirdly in the transition era from dust to a K-matter dominated
expansion (K-matter came into fashion some years ago; Ref. 6), and fi-
nally, from K-matter to a vacuum-dominated universe. To carry out this
analysis we shall resort to the covariant and gauge-invariant cosmological
perturbation theory put forward by Olson [7], Woszczyna and Kulak [§]
and Ellis and coworkers [9]. We will rely especially on the pedagogical and
elegant presentation of Jackson [10]. Some of these eras may never show
up. It may happen that the cosmological constant is exactly zero, and/ or
that the K-matter does not exist in reality. At any rate, it is always in-
teresting to anticipate the evolution of the small inhomogeneities in the
event that this were not the case.

2. PERTURBATION THEORY

It is advantageous to study the evolution of small inhomogeneities in
the Universe in terms of covariant and gauge-invariant quantities. While
the gauge-invariant approach by Bardeen [11] aims to overcome the am-
biguity related to the splitting of the spacetime metric and stress-energy
tensor quantities into a zeroth-order and small first-order perturbations,
the covariant approach, especially worked out by Ellis et al [9], does not
introduce a fictitious background universe at all. In this spirit we shall
consider the covariantly defined spatial gradient of the energy density p,
ie. h,puv, where h; = ¢ + u*u,, with u*u, = —1, is the spatial projector
on the comoving hypersurfaces. More precisely we will focus our atten-
tion on the fractional density gradient on comoving hypersurfaces used by
Jackson,

ah®p .,
D, = P b=0,1,2,3), (1)
p+ P

where P is the pressure, a is a length scale, generally given by u!, = © =
3a/a. For an almost homogeneous and isotropic universe a coincides with
the scale factor of the Robertson—-Walker metric. In the latter case the
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second-order differential equation that governs the evolution of D" [see
Ref. 10, eq. (57)] is

i)“+( oD - [ @+ 477:G(p—3P)+2A]d_P
dp
+4nG(p+ P) + ——]17‘ = 0. (2)

Assuming the factorization D, = D) (1) Vi Qm), where Q) satisfies

2 2
V Q(m) = —-m Q(m),

one finds in the spatially flat FLRw case, where m is related to the physical
wavelength A by A = 2za/m, that the last term in eq. (2) can be neglected
on large perturbation scales, i.e. for m < 1 (see Ref. 12 and references
therein). In such a case the solutions for radiation and dust can be found
analytically. These are Dy )(radiation) oc a* and Dimy(dusty € a , for the
growing modes, and D, (radiation) oca~! and Dim)(dust) oca=¥? for the
decaying ones. But for a mixture of both components — see below —
no analytical solution exists. Since we will only be interested in large
perturbation scales throughout this paper we will omit any index attached
to D in the following.

3. THE RADIATION PLUS DUST ERA

To describe the evolution of the Universe from very early times to our
days we consider an almost FLRW universe of flat space sections filled with
mixture of massless radiation and dust such that there is no net interchange
of energy between both components. The mixture begins expanding like
radiation and then gently changes its expansion law to that of dust. To
implement this we take an equation of state that depends on the scale
factor (see Ref. 13)

P(a) = [y(a) - 1]p(a) (3)

where (43
y(a) = L3ar (4)

a + ax

ax being the scale factor corresponding to the instant pqust = Pradiation-
By solving the zeroth-order Friedmann equation with £ = 0, i.e.

a\’_ 1
:_K)
a 3p
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Figure 1. Evolution of the scale factor for FLRW universes dominated, respectively, by
radiation, dust, and a mixture of radiation and dust with equation of state given by (3)
and (4).
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Figure 2. Growing modes of the cosmological perturbations for radiation, dust, and
the mixture of radiation and dust.

where as usual k = 87G, we obtain the relation between the time and the
scale factor

t(a) = (a = 2a+)+ja + a+ + 2a*\/a_*. (5)

Figure 1 depicts the evolution of the scale factor for radiation, dust, and
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the mixture radiation-dust. For the latter fluid eq. (2) takes the form

2a + ax 2

D+ A5 —D -
az\/a+ ax 2a*(a + ax)

(3a2 + 6aax + 4a%)D= 0,

where A = (a3 Ho)/(+|ao + a+) with Ho = (a/a)o (here the subindex zero
means present time). Solutions to this equation can be found only nu-
merically. There are two modes for the evolution of the perturbations, a
growing mode and a decaying one. Only the former is of interest to us
since the latter cannot lead to structure formation. Graphs for the evolu-
tion of D in terms of the scale factor for radiation, matter and the mixture
are shown in Figure 2. For a(¢) > a+ the slopes of the curves for dust and
the mixture coincide, as it should.

4. THE DUST PLUS QUANTUM VACUUM ERA

Above we have considered a universe with a vanishing cosmological
constant [A = 0 in eq. (2)], something very reasonable because, if it is
non-vanishing, it must be so small that it has had no noticeable impact
on cosmic evolution so far. However it is perfectly admissible to con-
sider a positive non-zero cosmological constant as it amounts to a non-
zero vacuum energy density. This may well be the remnant left over after
a non-complete vacuum decay which supposedly took place during the
inflationary period (there are some papers dealing with this possibility;
Ref. 14). In this case, as p, = constant and pgust oca ™, there will be an
instant such that p, = pqust, and from this time onward the vacuum energy
will dominate. Here we consider the transition from a dust-dominated to
A-dominated universe as well as the corresponding cosmological perturba-
tions at that epoch.

For a dust-vacuum fluid the energy conservation equation can be writ-
ten as

. a a
p= =3"(p*+ P)= -3"ayp (6)
a a
with
P=pm t pv,
P = Pv —Pv,
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Figure 4. Growing mode of the cosmological perturbations for a FLRW universe with

dust plus vacuum energy.
ﬂ%_ naQ3 +4°
(7

P= P (1+ n)ap

m 0

n
Py

Note that the last expression implies the right asymptotic limits, i.e. p oC
a~? and p oc constant for small and for large scale factors, respectively.



Growth of Cosmological Perturbations 305

For an almost FLRw universe with k& = 0 the solution to the zeroth-
order Friedmann equation is

2 Aa® + B + \J4d®
t= —=1n \4a \da , (8)
34/A4 w,B
where 3
B
4= - B = K1 podg . )
nap 3(1+n)

Figure 3 depicts the scale factor versus the time for different values of A.
As expected, the higher the contribution of dust, the slower the expansion.
On large perturbation scales eq. (2) reduces to

3
34+ . A
na _ n (a_()) D= 0) (10)
a

where we have used the relationships
A= 8xGp,, B=""ua. (11)

We have numerically solved (10) for different n values. Figure 4 displays
the corresponding graphs for dust perturbations. These show a steady
initial growth, D ~ a, followed by a gentle approach to a constant asymp-
totic value. The larger n, the higher the asymptotic value. This was to
be expected on physical grounds. There are two competing effects, on the
one hand the gravitational attraction of the matter on itself which for a
static universe leads to an exponential growth, and on the other hand the
Universe expansion, which for a vacuum-dominated universe turns out to
be exponential. Therefore after a period, whose length depends on the ra-
tio n between the energy densities, one effect offsets the other. Obviously,
the asymptotic behavior for large a(¢) can also be found analytically from
eq. (2) under the assumption A > 887G p,, .

5. THE DUST PLUS K-MATTER ERA

The existence of K-matter, a form of energy that redshifts with cos-
mic expansion as a2 and obeys an equation of state Px = —px /3 (such
as cosmic strings and some kinds of textures) has been postulated in the
literature, and various of its cosmological consequences explored (see for
instance Refs. 6 and 15). It may correspond to a topologically stabi-
lized scalar-field configuration such as a net of not intersecting cosmic
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strings [16] or textures. Here we focus our attention in a homogeneous
and isotropic universe in a phase of expansion such that its energy den-
sity is roughly evenly distributed between dust and K-matter (either type
1 or 2). We assume that the energy density of the massless radiation
fluid and that of the vacuum can be ignored at this stage. Therefore
p= pm + px = (B/a’) + (4/d*) and Px = —A/(3a”), where 4 and B
are positive definite constants. Applying the same ansatz as before we get
P(a) = [y(a) - 1]p(a) with

24a + 3B

"D =54+ By

When this equation is combined with the energy conservation equation

. a
p= =3"(pt P),
a

p Aa + B @3
0 Aay + B al’

(Here the subindex zero refers to a suitably chosen time within this era.)
This expression has the right asymptotic limits, i.e. poca™> and p oca ™2
for the dust-dominated and K-matter dominated eras, respectively.

Likewise inserting y(«) in the zeroth-order Friedmann equation above
for the flat case we obtain after integration

there follows

(Aa +B)a B . (Jda+ B+ +[4a)
{(a) = e . (12
V87TG \/A3 A|B

Again this equation has the right asymptotic limits, i.e. 7 oca™? and r oca
for the dust-dominated and the K-matter dominated eras, respectively.
From it we have for the deceleration parameter ¢ = -1 + 'z“y(a). In the
case at hand eq. (2) reduces to

. BxG ( 34a+ 2B . B(2Aa + 3B)
D+ D-8 D=0. (13)

\/Aa+ B 6(Aa + B)a®

We have numerically integrated this equation for different values of the
ratio n = (pm/pk )o. The corresponding behavior (Figure 5) is similiar
to the one encountered in the dust plus vacuum situation studied earlier.
After an initial growth the perturbations get frozen for large a(z). The
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Figure 5. Growing mode of the cosmological perturbations for a FLRW universe with a
mixture of dust plus K-matter. The higher n, the higher the constant asym ptotic value
of the fractional density gradient.

asymptotic behavior, D = constant, follows directly from the above equa-
tion by setting B to zero, and coincides with the analytical result from
(2), with A = 0, when only K-matter is considered. It is worthy of note
that our result for the expansion era dominated by the K-matter clearly
differs from Kolb’s (see eq. (45) in Ref. 6). This author finds a growth
of the fractional density perturbations oc ¢ \]6_'1)/2 in this era. The differ-
ence with our result, i.e. D = constant, arises because this author uses a
Newtonian approach, specifically eq. (15.9.23) of [2]. If one uses instead
the corresponding relativistic generalization, namely eq. (15.10.57) of [2]
and takes into account dPk /dpx = —‘;‘, one obtains a constant fractional
density perturbation in line with our finding.

6. THE K-MATTER PLUS QUANTUM VACUUM ERA

Once a sufficiently long time has elapsed the influence of the dust
component on the cosmic evolution may be ignored. If a cosmological con-
stant really exists, after the dominance of the K-matter component the
A term will take over. Here we consider the transition from a K-matter
dominated expansion to a vacuum-dominated one. Using the correspond-
ing expressions for both forms of energy (K-matter and vacuum) in the
Friedmann equation and integrating the resulting expression one arrives
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Figure 6. Dominating mode of the cosmological perturbations for a FLRW universe
with K-matter plus vacuum energy.
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Figure 7. Same as in Figure 6, but now D is depicted in terms of time. Here it is more
clearly seen that the cosmological perturbations vanish altogether after a sufficiently
long time has elapsed.

t(a) = iln[\}ia+\/+ﬁa2 ) (14)

Notice that in this case @ oca. Moreover ¢ = —(Aa?)/(87GA + Aa®), and
therefore for Aa®> > 87G A one has ¢ —>—1 and ¢ —>0 in the opposite limit,

at
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as it should. In the case at hand the differential equation (2) governing
the perturbations reduces to

a2

; 2+ na?\ . A

D+ A(u‘l) D+ S D=0, (15)
where n = pxo/py. As Figures 6 and 7 show, for small a(¢) the pertur-
bations in the K-matter fluid stay constant and then decay to die away
for large a(t). Both asymptotic limits can be directly guessed by direct
inspection of (15).

7. CONCLUDING REMARKS

We have explored the evolution of the dominating modes of the cos-
mological perturbations during some transition eras of the Universe ex-
pansion. To do this we first determined in each case the dependence of
the scale factor on ¢ and introduced a(¢) into Jackson’s equation (2), along
with the state equations of the fluids relevant to the transition era under
consideration. Equations (12)—(15) are new as well as Figures 2 and 4-7.
Figures 1 and 3 have been included for the sake of completeness.

As expected in the transition era from radiation-dominated to dust-
dominated expansion the growing mode increases faster than in the pure
radiation case and slower than in the pure dust one. In the transition era
dominated by dust plus quantum vacuum the mode grows until the fluid
reaches the exponential expansion regime. From that point onwards D
stays constant at a value that depends on the ratio pno/pv. Likewise at
the end of the transition era dust plus K-matter the growing mode freezes
but now the scale factor varies asymptotically as ¢ only. Earlier results
predicting a growth of cosmological perturbations in a K-matter universe
were corrected. Finally, during the transition era from K-matter to quan-
tum vacuum-dominated expansion, initially the mode remains constant,
then decays once the expansion becomes dominated by the vacuum en-
ergy, and eventually dies away. So strictly speaking there is not a growing
mode.
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