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In this art icle we det erm ine the dominat ing modes of the cosmologi-

cal perturbat ions in diŒerent transit ion eras of the universe evolut ion

(nam ely, radiat ion-dust , dust-vacuum , dust -K-mat ter, and K-mat ter-

vacu um) in a covariant and gauge-invariant manner.
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1. INTRODUCTION

According to the convent ional picture the formation of cosmic structures

can be traced to the existence of small init ial inhomogeneit ies in the early

Universe which, whatever their origin was, grew with time. As the Uni-

verse expanded these inhomogeneit ies necessarily felt this eŒect, as it tends

to dilut e them and consequent ly to homogenize the Universe. So, any inho-

mogeneity that we may observe today has necessarily survived the cosmic

expansion thanks to the natural tendency of matter (and radiat ion) to

clump by gravitational attraction. Therefore the perturbat ions will either

grow or decay depending on the type of matter considered in conjunct ion

with the speci® c expansion law. Since the pioneering work of Lifshitz [1]

much attention has been paid to the evolut ion of small inhomogeneit ies in
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the radiat ion-dominat ed era as well as in the matter-dominated one (see

for instance Refs 2± 4). By contrast, the transit ion era from radiat ion to

dust , in which none of these component s dominat ed the expansion, has

received comparat ively lit tle attent ion (see, however, Ref. 5) . The tar-

get of this paper is to study the evolut ion of small inhomogeneit ies in an

almost Friedmann± Lemâõ tre± Robertson± Walker (flrw) universe with ¯ at

space sections in diŒerent transit ion eras, ® rst ly, in the one just mentioned,

secondly, in the transit ion era from dust to a vacuum-dominat ed universe

(i.e. a universe in which a small cosmological constant , L > 0, is assumed

to exist) , thirdly in the transit ion era from dust to a K-matter dominated

expansion (K-matter came into fashion some years ago; Ref. 6), and ® -

nally, from K-matter to a vacuum-dominated universe. To carry out this

analysis we shall resort to the covariant and gauge-invariant cosmological

perturbat ion theory put forward by Olson [7], Woszczyna and Kulak [8]

and Ellis and coworkers [9]. We will rely especially on the pedagogical and

elegant presentation of Jackson [10]. Some of these eras may never show

up. It may happen that the cosmological constant is exact ly zero, and/ or

that the K-matter does not exist in reality. At any rate, it is always in-

teresting to anticipate the evolut ion of the small inhomogeneit ies in the

event that this were not the case.

2. PERTURBATION THEORY

It is advant ageous to study the evolut ion of small inhomogeneit ies in

the Universe in terms of covariant and gauge-invariant quant ities. While

the gauge-invariant approach by Bardeen [11] aims to overcome the am-

biguity related to the split ting of the spacet ime metric and stress-energy

tensor quant ities into a zeroth-order and small ® rst-order perturbat ions,

the covariant approach, especially worked out by Ellis et al. [9], does not

int roduce a ® ctit ious background universe at all. In this spirit we shall

consider the covariant ly de® ned spat ial gradient of the energy density r,

i.e. hu
m r,u , where hu

m º gm
u + um uu , with um um = ± 1, is the spat ial projector

on the comoving hypersurfaces. More precisely we will focus our atten-

tion on the fractional density gradient on comoving hypersurfaces used by

Jackson,

Dm º
ah u

m r,u

r + P
(m, u = 0, 1, 2, 3) , (1)

where P is the pressure, a is a length scale, generally given by um
;m º H =

3 Ça/ a. For an almost homogeneous and isotropic universe a coincides with

the scale factor of the Robertson± Walker metric. In the latter case the
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second-order diŒerential equat ion that governs the evolut ion of Dm [see

Ref. 10, eq. (57) ] is

ÈDm
+ ( 2

3
±

dP

dr ) H ÇDm
± [( dP

dr ) ¢

H + [4pG (r ± 3P ) + 2L]
dP

dr

+ 4pG (r + P ) +
dP

dr

Ñ 2

a2 ]Dm
= 0. (2)

Assuming the factorizat ion Dm = D( m ) ( t) Ñ m Q( m ) , where Q ( m ) satis® es

Ñ 2
Q ( m ) = ± m

2
Q ( m ) ,

one ® nds in the spat ially ¯ at flrw case, where m is relat ed to the physical

wavelengt h l by l = 2pa/ m , that the last term in eq. (2) can be neglected

on large perturbat ion scales, i.e. for m ¿ 1 (see Ref. 12 and references

therein) . In such a case the solut ions for radiat ion and dust can be found

analyt ically. These are D( m ) ( rad ia t ion) µ a2 and D( m ) ( d ust ) µ a , for the

growing modes, and D( m ) ( rad ia t ion) µ a - 1 and D( m ) ( du st ) µ a - 3 / 2 for the

decaying ones. But for a mixture of both component s Ð see below Ð

no analyt ical solut ion exists. Since we will only be interested in large

perturbat ion scales throughout this paper we will omit any index attached

to D in the following.

3. THE RADIATION PLUS DUST ERA

To describe the evolut ion of the Universe from very early times to our

days we consider an almost flrw universe of ¯ at space sections ® lled with

mixture of massless radiat ion and dust such that there is no net int erchange

of energy between both component s. The mixture begins expanding like

radiat ion and then gent ly changes its expansion law to that of dust . To

implement this we take an equat ion of state that depends on the scale

factor (see Ref. 13)

P (a) = [c (a) ± 1]r(a) (3)

where

c (a) =
a + (4/ 3)a*

a + a*

, (4)

a* being the scale factor corresponding to the instant rdu st = rradia t ion .

By solving the zeroth-order Friedmann equat ion with k = 0, i.e.

( Ça

a ) 2

=
1

3
kr,
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Figure 1. Evolut ion of the scale factor for flrw universes dominat ed, respect ively, by

radiat ion, dust, and a m ixture of radiat ion and dust with equat ion of stat e given by (3)

and (4) .

F ig u r e 2 . Grow ing m odes of the cosmological perturbat ions for radiat ion, dust , and

the mixture of radiat ion and dust .

where as usual k º 8pG , we obtain the relat ion between the time and the

scale factor

t(a) = (a ± 2a* ) Ö a + a* + 2a* Ö a* . (5)

Figure 1 depicts the evolut ion of the scale factor for radiat ion, dust , and
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the mixture radiat ion-dust . For the latter ¯ uid eq. (2) takes the form

ÈD + A
2a + a*

a2 Ö a + a*

ÇD ±
A2

2a4 (a + a* )
(3a

2
+ 6aa* + 4a

2
* )D = 0,

where A º (a2
0H0 )/ ( Ö a0 + a* ) with H0 º ( Ça/ a)0 (here the subindex zero

means present time). Solut ions to this equat ion can be found only nu-

merically. There are two modes for the evolut ion of the perturbat ions, a

growing mode and a decaying one. Only the former is of interest to us

since the lat ter cannot lead to structure formation. Graphs for the evolu-

tion of D in terms of the scale factor for radiat ion, matter and the mixture

are shown in Figure 2. For a(t) ³ a* the slopes of the curves for dust and

the mixture coincide, as it should.

4. THE DUST PLUS QUANTUM VACUUM ERA

Above we have considered a universe with a vanishing cosmological

constant [L = 0 in eq. (2)], something very reasonable because, if it is

non-vanishing, it must be so small that it has had no noticeable impact

on cosmic evolut ion so far. However it is perfectly admissible to con-

sider a posit ive non-zero cosmological constant as it amount s to a non-

zero vacuum energy density. This may well be the remnant left over after

a non-complet e vacuum decay which supposedly took place during the

in¯ at ionary period (there are some papers dealing with this possibility;

Ref. 14) . In this case, as rv = constant and rd ust µ a - 3 , there will be an

instant such that rv ’ rdu st , and from this time onward the vacuum energy

will dominate. Here we consider the transit ion from a dust-dominat ed to

L-dominat ed universe as well as the corresponding cosmological perturba-

tions at that epoch.

For a dust-vacuum ¯ uid the energy conservat ion equat ion can be writ-

ten as

Çr = ± 3
Ça

a
(r + P ) = ± 3

Ça

a
ac r (6)

with

r = rm + rv ,

P = Pv = ± rv ,

c (a) =
n a3

0

n a3
0 + a3

,
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F ig u r e 3 . Evolution of the scale factor of a flrw universe with dust plus vacu um

energy.

F ig u r e 4 . Growing m ode of the cosmological perturbat ions for a flrw universe with

dust plus vacu um energy.

r = r0
a3

0

a3 ( n a3
0 + a3

(1 + n )a3
0
) ,

n =
rm 0

rv
. (7)

Note that the last expression implies the right asymptotic limits, i.e. r µ
a - 3 and r µ constant for small and for large scale factors, respectively.
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For an almost flrw universe with k = 0 the solut ion to the zeroth-

order Friedmann equat ion is

t =
2

3 Ö A
ln [ Ö Aa3 + B + Ö Aa3

Ö B ] , (8)

where

A =
B

n a3
0

, B =
kn r0 a3

0

3(1 + n )
. (9)

Figure 3 depict s the scale factor versus the time for diŒerent values of L.

As expected, the higher the contribut ion of dust , the slower the expansion.

On large perturbat ion scales eq. (2) reduces to

ÈD + 2 Ö
L

3

a3 + n a3
0

a3
ÇD ±

nL

2 ( a0

a ) 3

D = 0, (10)

where we have used the relat ionships

L = 8pGrv , B =
nL

3
a

3
0 . (11)

We have numerically solved (10) for diŒerent n values. Figure 4 displays

the corresponding graphs for dust perturbat ions. These show a steady

init ial growth, D ~ a, followed by a gentle approach to a constant asymp-

totic value. The larger n , the higher the asymptotic value. This was to

be expected on physical grounds. There are two competing eŒects, on the

one hand the gravitat ional attraction of the matter on it self which for a

static universe leads to an exponent ial growth, and on the other hand the

Universe expansion, which for a vacuum-dominated universe turns out to

be exponent ial. Therefore after a period, whose length depends on the ra-

tio n between the energy densit ies, one eŒect oŒsets the other. Obviously,

the asymptotic behavior for large a(t) can also be found analyt ically from

eq. (2) under the assumption L À 8pGrm .

5. THE DUST PLUS K-MATTER ERA

The existence of K-matter, a form of energy that redshift s with cos-

mic expansion as a - 2 and obeys an equat ion of state PK = ± rK / 3 (such

as cosmic strings and some kinds of textures) has been postulated in the

literature, and various of its cosmological consequences explored (see for

instance Refs. 6 and 15). It may correspond to a topologically stabi-

lized scalar-® eld con® gurat ion such as a net of not intersecting cosmic
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strings [16] or textures. Here we focus our attention in a homogeneous

and isotropic universe in a phase of expansion such that its energy den-

sity is roughly evenly distributed between dust and K-matter (either type

1 or 2). We assume that the energy density of the massless radiat ion

¯ uid and that of the vacuum can be ignored at this stage. Therefore

r = rm + rK = (B / a3 ) + (A/ a2 ) and PK = ± A/ (3a2 ), where A and B

are posit ive de® nite constants. Applying the same ansatz as before we get

P (a) = [c (a) ± 1]r(a) with

c (a) =
2Aa + 3B

3(Aa + B )
.

When this equat ion is combined with the energy conservat ion equat ion

Çr = ± 3
Ça

a
(r + P ),

there follows
r

r0

= ( Aa + B

Aa0 + B ) ( a0

a )3

.

(Here the subindex zero refers to a suitably chosen time within this era.)

This expression has the right asymptotic limits, i.e. r µ a - 3 and r µ a - 2

for the dust-dominated and K-matter dominat ed eras, respect ively.

Likewise insert ing c (a) in the zeroth-order Friedmann equat ion above

for the ¯ at case we obtain after integrat ion

t(a) = Ö
3

8pG [ Ö (Aa + B )a

A
±

B

Ö A3
ln

( Ö Aa + B + Ö Aa)

Ö B ] . (12)

Again this equat ion has the right asymptotic limits, i.e. t µ a3 / 2 and t µ a

for the dust-dominated and the K-matter dominated eras, respectively.

From it we have for the decelerat ion parameter q = ± 1 + 3
2 c (a) . In the

case at hand eq. (2) reduces to

ÈD + Ö
8pG

3a3 ( 3Aa + 2B

Ö Aa + B ) ÇD ± 8pG
B (2Aa + 3B )

6(Aa + B )a3
D = 0 . (13)

We have numerically int egrated this equat ion for diŒerent values of the

ratio n = (rm / rK )0 . The corresponding behavior (Figure 5) is similiar

to the one encountered in the dust plus vacuum situat ion studied earlier.

After an init ial growth the perturbat ions get frozen for large a(t). The
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F ig u r e 5 . Grow ing mode of the cosmological perturbat ions for a flrw universe with a

mixture of dust plus K-mat ter. The higher n , the higher the constant asym ptotic value

of the fract ional density gradient .

asymptotic behavior, D = constant, follows direct ly from the above equa-

tion by sett ing B to zero, and coincides with the analyt ical result from

(2), with L = 0, when only K-matter is considered. It is worthy of note

that our result for the expansion era dominat ed by the K-matter clearly

diŒers from Kolb’ s (see eq. (45) in Ref. 6). This author ® nds a growth

of the fractional density perturbat ions µ t( Ö 6 - 1) / 2 in this era. The diŒer-

ence with our result , i.e. D = constant, arises because this author uses a

Newtonian approach, speci® cally eq. (15.9.23) of [2]. If one uses instead

the corresponding relat ivist ic generalizat ion, namely eq. (15.10.57) of [2]

and takes into account dPK / drK = ± 1
3 , one obtains a constant fractional

density perturbat ion in line with our ® nding.

6. THE K-MATTER PLUS QUANTUM VACUUM ERA

Once a su� ciently long time has elapsed the in¯ uence of the dust

component on the cosmic evolut ion may be ignored. If a cosmological con-

stant really exists, after the dominance of the K-matter component the

L term will take over. Here we consider the transit ion from a K-matter

dominat ed expansion to a vacuum-dominated one. Using the correspond-

ing expressions for both forms of energy (K-matter and vacuum) in the

Friedmann equat ion and integrat ing the result ing expression one arrives
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F ig u r e 6 . Dominat ing mode of the cosmological perturbat ions for a flrw universe

with K-matter plus vacu um energy.

F ig u r e 7 . Same as in Figure 6, but now D is depicted in terms of time. Here it is m ore

clearly seen that the cosmological perturbat ions vanish altogether aft er a su� cient ly

long t ime has elapsed.

at

t(a) = Ö
3

L
ln [Ö

L

kA
a + Ö 1 +

L

kA
a2 ] . (14)

Notice that in this case Èa µ a. Moreover q = ± (La2 )/ (8pGA + La2 ), and

therefore for La2 À 8pGA one has q ® ± 1 and q ® 0 in the opposit e limit ,
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as it should. In the case at hand the diŒerential equat ion (2) governing

the perturbat ions reduces to

ÈD + Ö 3L( a2 + n a2
0

a2 ) ÇD +
L

3
D = 0, (15)

where n º rK 0 / rv . As Figures 6 and 7 show, for small a(t) the pertur-

bat ions in the K-matter ¯ uid stay constant and then decay to die away

for large a(t). Both asymptotic limits can be direct ly guessed by direct

inspect ion of (15) .

7. CONCLUDING REMARKS

We have explored the evolut ion of the dominat ing modes of the cos-

mological perturbat ions during some transit ion eras of the Universe ex-

pansion. To do this we ® rst determined in each case the dependence of

the scale factor on t and introduced a(t) into Jackson’ s equat ion (2), along

with the state equat ions of the ¯ uids relevant to the transit ion era under

considerat ion. Equat ions (12) ± (15) are new as well as Figures 2 and 4± 7.

Figures 1 and 3 have been included for the sake of completeness.

As expected in the transit ion era from radiat ion-dominat ed to dust-

dominat ed expansion the growing mode increases faster than in the pure

radiat ion case and slower than in the pure dust one. In the transit ion era

dominat ed by dust plus quant um vacuum the mode grows until the ¯ uid

reaches the exponent ial expansion regime. From that point onwards D
stays constant at a value that depends on the ratio rm 0 / rv . Likewise at

the end of the transit ion era dust plus K-matter the growing mode freezes

but now the scale factor varies asymptotically as t only. Earlier results

predict ing a growth of cosmological perturbat ions in a K-matter universe

were corrected. Finally, during the transit ion era from K-matter to quan-

tum vacuum-dominat ed expansion, init ially the mode remains constant,

then decays once the expansion becomes dominat ed by the vacuum en-

ergy, and eventually dies away. So strictly speaking there is not a growing

mode.
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